Citation: WU Hao-Yi, HU Yi-Hua, CHEN Li, WANG Xiao-Juan. Effect of Europium Valence on the Luminescent Properties of Sr2MgSi2O7:Eu[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1201-1206. doi: 10.3866/PKU.WHXB20110523 shu

Effect of Europium Valence on the Luminescent Properties of Sr2MgSi2O7:Eu

  • Received Date: 19 November 2010
    Available Online: 11 April 2011

    Fund Project: 国家自然科学基金(21071034, 20871033)资助项目 (21071034, 20871033)

  • Sr1.99MgSi2O7:Eu0.01 samples were prepared in four steps under air, a reducing atmosphere, air again, and a reducing atmosphere again. The samples prepared in air showed both Eu2+ and Eu3+ em- ission while the samples prepared in a reducing atmosphere showed Eu2+ emission with a long afterglow and two thermoluminescence (TL) bands. However, only one TL band was observed for the sample prepared directly in the reducing atmosphere. Hole traps were created during the synthesis in air and were preserved during the reducing synthesis. These hole traps are different from the electron traps created by a reducing atmosphere. The hole traps and the electron traps result in two TL bands.

  • 加载中
    1. [1]

      (1) Chen, Y.; Cheng, X.; Liu, M.; Qi, Z.; Shi, C. J. Lumin. 2009, 129, 531.

    2. [2]

      (2) Teng, X.; Liu, Y.; Liu, Y.; Hu, Y.; He, H.; Zhuang, W. J. Lumin. 2010, 130, 851.

    3. [3]

      (3) Yao, G. Q.; Feng, Y. E.; Duan, J. F.; Lin, J. H. Acta Phys. -Chim. Sin. 2003, 19, 226.

    4. [4]

      [姚光庆, 冯艳娥, 段洁菲, 林建华. 物理化学学报. 2003, 19, 226.]

    5. [5]

      (4) Cao, F. B.; Tian, Y. W.; Chen, Y. J.; Xiao, L. J.; Liu, Y. Y. Acta Phys. -Chim. Sin. 2009, 25, 299.

    6. [6]

      [曹发斌, 田彦文, 陈永杰, 肖林久, 刘云义. 物理化学学报. 2009, 25, 299.]

    7. [7]

      (5) Luo, X. X.; Cao, W. H.; Sun, F. Chin. Sci. Bull. 2008, 53, 1010.

    8. [8]

      [罗昔贤, 曹望和, 孙 菲. 科学通报. 2008, 53, 1010.]

    9. [9]

      (6) Zeng, Q. H.; Zhang, X. G.; Liang, H. B.; ng, M. L. J. Chin. Rare Earth Soc. 2011, 29, 8.

    10. [10]

      [曾琦华, 张信果, 梁宏斌, 龚孟濂. 中国稀土学报. 2011, 29, 8.]

    11. [11]

      (7) Murayama, Y.; Takeuchi, N.; Aoki, Y.; Matsuzawa, T. Phosphorescent Phosphor. US Patent 5424006, 1995-6-13.

    12. [12]

      (8) Lü, X.; Sun, M.; Zhang, J.; Wang, T. J. Rare Earth 2010, 28, 150.

    13. [13]

      (9) Xiao, Z.; Xiao, Z. Long Afterglow Silicate Luminescent Materials and Its Manufacturing Method. US Patent 6093346, 2000-7-25.

    14. [14]

      (10) Fei, Q.; Chang, C.; Mao, D. J. Alloy. Compd. 2005, 390, 133.

    15. [15]

      (11) Xu, Y.; Chen, D. Ceram. Int. 2008, 34, 2117.

    16. [16]

      (12) Clabau, F.; Rocquefelte, X.; Jobic, S.; Deniard, P.; Whangbo, M. H.; Garcia, A.; Mercier, T. L. Chem. Mater. 2005, 17, 3904.

    17. [17]

      (13) Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. J. Electrochem. Soc. 1996, 143, 2670.

    18. [18]

      (14) Aitasalo, T.; Hölsä, J.; Jungner, H.; Lastusaari, M.; Niittykoski, J. J. Lumin. 2001, 94-95, 59.

    19. [19]

      (15) Dorenbos, P. Phys. Stat. Sol. B 2005, 242, R7.

    20. [20]

      (16) Wu, H.; Hu, Y.; Wang, Y.; Zeng, B.; Mou, Z.; Deng, L.; Xie, W. J. Alloy. Compd. 2009, 486, 549.

    21. [21]

      (17) Meng, X.; Wang, Y.; Jin, H.; Sun, L. J. Lumin. 2007, 122-123, 385.

    22. [22]

      (18) Sun, J.; Liu, Z.; Du, H. J. Rare Earth 2011, 29, 101.

    23. [23]

      (19) Aitasalo, T.; Hölsä, J.; Jungner, H.; Lastusaari, M.; Niittykoski, J. J. Phys. Chem. B 2006, 110, 4589.

    24. [24]

      (20) Chen, X.; Hu, Y.; Wang, Y. J. Nanosci. Nanotechnol. 2010, 10, 1.

    25. [25]

      (21) Chen, Y.; Liu, B.; Kirm, M.; Qi, Z.; Shi, C.; True, M.; Vielhauer, S.; Zimmerer, G. J. Lumin. 2006, 118, 70.

    26. [26]

      (22) Shi, Q.; Zhang, J.; Cai, C.; Cong, L.; Wang, T. Mater. Sci. Eng. B 2008, 149, 82.

    27. [27]

      (23) Kubo, H.; Aizawa, H.; Katsumata, T.; Komuro, S.; Morikawa, T. J. Cryst. Growth 2005, 275, e1767.

    28. [28]

      (24) Zhu, Y.; Zheng, M.; Zeng, J.; Xiao, Y.; Liu, Y. Mater. Chem. Phys. 2009, 113, 721.

    29. [29]

      (25) Grossweiner, L. I. J. Appl. Phys. 1953, 24, 1306.

    30. [30]

      (26) Chen, R. J. Mater. Sci. 1976, 11, 1521.

    31. [31]

      (27) Peng, M.; Pei, Z.; Hong, G.; Su, Q. Chem. Phys. Lett. 2003, 371, 1.

    32. [32]

      (28) Peng, M.; Qiu, J.; Ynag, L.; Zhao, C. Opt. Mater. 2004, 27, 591.

    33. [33]

      (29) Peng, M.; Hong, G. J. Lumin. 2007, 127, 735.

    34. [34]

      (30) Pei, Z.; Zeng, Q.; Su, Q. J. Phys. Chem. Solids 2000, 61, 9.

    35. [35]

      (31) Pei, Z.; Su, Q.; Zhang, J. J. Alloy. Compd. 1993, 198, 51.

    36. [36]

      (32) Ochi, Y. Mater. Res. Bull. 2006, 41, 1825.

    37. [37]

      (33) Wang, Y.; Wang, L. J. Appl. Phys. 2007, 101, 053108.

    38. [38]

      (34) Shao, Z.; Zhang, Q.; Liu, T.; Chen, J. Nucl. Instrum. Meth. B 2008, 266, 797.


  • 加载中
    1. [1]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    2. [2]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    14. [14]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(1077)
  • Abstract views(2652)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return