Citation: JIANG Jing-Jing, LONG Ming-Ce, WU De-Yong, CAI Wei-Min. Preparation of F-Modified Nanosized TiO2 and Its Methyl Orange Photodegradation Mechanism[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1149-1156. doi: 10.3866/PKU.WHXB20110520 shu

Preparation of F-Modified Nanosized TiO2 and Its Methyl Orange Photodegradation Mechanism

  • Received Date: 20 October 2010
    Available Online: 8 April 2011

    Fund Project: 高等学校博士学科点专项科研基金新教师基金(20090073120042)资助项目 (20090073120042)

  • Fluorine-modified nanosized TiO2 (F-TiO2) was prepared by a facile precipitation-fluorination- reflux method. Characterizations of transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS) were carried out to investigate various properties of the as-prepared F-TiO2 powder. We found that the F-TiO2 particles were small (5-8 nm) and ellipsoidal in shape. The presence of fluorine not only suppressed the formation of a brookite phase, but also improved the crystallinity of the anatase phase. The fluorine atoms were mainly distributed on the surface of TiO2, and existed in both forms of chemical-adsorption and interstitial-doping. Compared to pure titania, the fluorine-modified TiO2 powder showed a much higher methyl orange (MO) degradation efficiency under UV light and under visible light. Through the experiments of alkaline washing and heat treatment, we found that the increased MO degradation rate under visible light irradiation was caused by the enhanced self- degradation of the dye over the surface-modified TiO2.

  • 加载中
    1. [1]

      (1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.

    2. [2]

      (2) Xu, J. J.; Ao, Y. H.; Fu, D. G.; Yuan, C. W. Appl. Surf. Sci. 2008, 254, 3033.

    3. [3]

      (3) Tang, J. W.; Quan, H. D.; Ye, J. H. Chem. Mater. 2007, 19, 116.

    4. [4]

      (4) Li, J. Y.; Ma, J. H.; Bai, T. Y.; Suyou, L. M. Acta Phys.-Chim. Sin. 2007, 23, 1213.

    5. [5]

      [李静谊, 马俊华, 白图雅, 苏优乐玛. 物理化学学报, 2007, 23, 1213.]

    6. [6]

      (5) Li, D.; Ohashi, N.; Hishita, S.; Kolodiazhnyi, T.; Haneda, H. J. Solid State Chem. 2005, 178, 3293.

    7. [7]

      (6) Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N. Chem. Phys. Lett. 2005, 401, 579.

    8. [8]

      (7) Ho, W.; Yu, J. C.; Lee, S. Chem. Commun. 2006, 1115.

    9. [9]

      (8) Ren, G.; Gao, Y.; Liu, X. ; Xing, A.; Liu, H.; Yin, J. Reac. Kinet. Mech. Cat. 2010, 100, 487.

    10. [10]

      (9) Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J. Langmuir 2008, 24, 7338.

    11. [11]

      (10) Huang, D. G.; Liao, S. J.; Dang, Z. Acta Chim. Sin. 2006, 64, 1805.

    12. [12]

      [黄冬根, 廖世军, 党 志. 化学学报, 2006, 64, 1805.]

    13. [13]

      (11) Ren, D. S.; Cui, X. L.; Zhang, Q.; Yang, X. L.; Zhang, Z. J. Vac. Sci. Technol. (China) 2002, 22, 421.

    14. [14]

      [任达森, 崔晓莉, 张 群, 杨锡良, 章壮健. 真空科学与技术, 2002, 22, 421.]

    15. [15]

      (12) Park, H.; Choi, W. J. Phys. Chem. B, 2004, 108, 4086.

    16. [16]

      (13) Zhu, S. Y.; Huo, M. X.; Zhang, L. L.; Yu, Q.; Wang, T. Z. Science and Technology Review 2010, 28, 112.

    17. [17]

      [朱遂一, 霍明昕, 张蕾蕾, 于 琪, 王天竹. 科技导报, 2010, 28, 112.]

    18. [18]

      (14) Bezrodna, T.; Puchkovska, G.; Shimanovska, V.; Chashechnikova, I.; Khalyavka, T.; Baran, J. Appl. Surf. Sci. 2003, 214, 222.

    19. [19]

      (15) Hung, W. C.; Fu, S. H.; Tseng, J. J.; Chu, H.; Ko, T. H. Chemosphere 2007, 66, 2142.

    20. [20]

      (16) Su, H. D. Preparation and Photocatalytic Activity of Titanium Dioxide Photocatalyst. Ph. D. Dissertation, Northeastern University, Liaoning, 2005.

    21. [21]

      [苏会东. 二氧化钛光催化剂的制备及其性能研究

    22. [22]

      [D]. 辽宁: 东北大学, 2005.]

    23. [23]

      (17) Chen, Y. M.; Zhong, J.; Chen, F.; Zhang, J. L. Chin. J. Catal. 2010, 31, 120.

    24. [24]

      [陈艳敏, 钟 晶, 陈 锋, 张金龙. 催化学报, 2010, 31, 120.]

    25. [25]

      (18) Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Di Valentin, C.; Pacchioni, G. J. Phys. Chem. C 2008, 112, 8951.

    26. [26]

      (19) Zhu, M. H. Instrumental Analysis, 3rd ed.; Higher Education Press: Beijing, 2000; p 275.

    27. [27]

      [朱明华. 仪器分析(第三版); 北京: 高等教育出版社, 2000: 275.]

    28. [28]

      (20) Yu, J. C.; Yu, J. G.; Ho, W.; Jiang, Z.; Zhang, L. Chem. Mater. 2002, 14, 3808.

    29. [29]

      (21) Liu, G.; Wu, T.; Zhao, J.; Hidaka, H.; Surpone, N. Environ. Sci. Technol. 1999, 33, 2081.

    30. [30]

      (22) Chen, C.; Zhao, W.; Li, J.; Zhao, J. C.; Hidaka, H.; Surpone, N. Environ. Sci. Technol. 2002, 36, 3604.

    31. [31]

      (23) Christine, M. D.; Joseph, R.; Jacques, J. V. Inorg. Chem. 1987, 26, 1212.

    32. [32]

      (24) Arichi, J.; Louis, B. Cryst. Growth Des. 2008, 8, 3999.

    33. [33]

      (25) Louis, B.; Lioubov K.-M. Microporous Mesoporous Mat. 2004, 74, 171.

    34. [34]

      (26) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.

    35. [35]

      (27) Vohra, M.; Kim, S.; Choi, W. J. Photochem. Photobiol. A 2003, 160, 55.

    36. [36]

      (28) Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes; Plenum Press: New York, 1980; p 154.

    37. [37]

      (29) You, X. F.; Chen, F.; Zhang, J. L.; Huang, J. Z.; Zhang, L. Z. Chin. J. Catal. 2006, 27, 270.

    38. [38]

      [尤先锋, 陈 锋, 张金龙, 黄家桢, 张利中. 催化学报, 2006, 27, 270.]


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(2045)
  • Abstract views(2532)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return