Citation: LI Yan-Feng, ZHU Ji-Qin, LIU Hui, HE Peng, WANG Peng, TIAN Hui-Ping. Theoretical Study of the Double-Bond Isomerization of 1-Hexene to cis-2-Hexene over ZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1081-1088. doi: 10.3866/PKU.WHXB20110516
-
We investigated the double-bond isomerization reaction of 1-hexene to cis-2-hexene on the surface of ZSM-5 zeolite using density functional theory with a 54T cluster model simulating the local structures of zeolite materials. We found that the double-bond isomerization proceeded by a mechanism that did not involve the bifunctional (acid-base) nature of the zeolite active sites but exclusively involved the Brønsted acid sites. According to this mechanism, 1-hexene is the first physically adsorbed onto the zeolite acid site resulting in the formation of a π-complex, and then the acidic proton of the zeolite transfers to a carbon atom of the double bond of the physisorbed 1-hexene. The other carbon atom of the double bond of the physisorbed 1-hexene bonds with the Brønsted host oxygen and yields a stable alkoxy intermediate. Thereafter, the Brønsted host oxygen abstracts a hydrogen atom from the C6H13 fragment and the C―O bond of the alkoxy intermediate is broken, which restores the zeolite active site and yields physisorbed cis-2-hexene. The proposed reaction pathway competes with the bifunctional pathway. The rate- determining step is the decomposition of the alkoxy intermediate with an activation energy of 134. 64 kJ·mol-1. The calculated apparent activation energy for the isomerization reaction is 59. 37 kJ·mol-1, which is in od agreement with the reported experimental value. These results well explain the energetic aspects during the double-bond isomerization and extend the understanding of the nature of zeolite active sites.
-
Keywords:
-
ZSM-5
, - Active site,
- Hexene,
- Density functional theory,
- Double-bond isomerization
-
-
-
[1]
(1) Wang, W. L.; Liu, B. J.; Zeng, X. J. Acta Phys. -Chim. Sin. 2008, 24, 2102.
-
[2]
[王文兰, 刘百军, 曾贤君. 物理化学学报, 2008, 24, 2102. ]
-
[3]
(2) Vermeiren, W.; Gilson, J. P. Top. Catal. 2009, 52, 1131.
-
[4]
(3) Kazansky, V. B. Acc. Chem. Res. 1991, 24, 379.
-
[5]
(4) Perez-Luna, M.; Cosultchi, A.; Toledo-Antonio, J. A.; Diaz-Garcia, L. Catal. Lett. 2009, 128, 290.
-
[6]
(5) Song, Y.; Bai, J.; Wu, Z. H.; Zhai, Y. C.; Xu, L. Y. Nat. Gas Chem. Ind. 2005, 30, 1.
-
[7]
[宋 毅, 白 杰, 吴治华, 翟玉春, 徐龙伢. 天然气化工, 2005, 30, 1. ]
-
[8]
(6) Zheng, A.; Wang, L.; Chen, L.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Phys. Chem. 2007, 8, 231.
-
[9]
(7) Lechert, H.; Dimitrov, C.; Bezuhanova, C.; Nenova, V. J. Catal. 1983, 80, 457.
-
[10]
(8) Bezouhanova, C.; Lechert, H.; Taralanska, G.; Meyer, A. React. Kinet. Catal. Lett. 1989, 40, 209.
-
[11]
(9) Abbot, J.; Corma, A.; Wojciechowski, B. W. J. Catal. 1985, 92, 398.
-
[12]
(10) Campbell, I. M. Catalysis at Surfaces, 1st ed.; Chapman and Hall: New York, 1988; pp 174-178.
-
[13]
(11) Pines, H. The Chemistry of Catalytic Hydrocarbon Conversions, 1st ed.; Academic Press: New York, 1981; pp 29-33.
-
[14]
(12) Burwell, R. L.; Shim, K. C.; Rowlinsox, H. C. J. Am. Chem. Soc. 1957, 79, 5142.
-
[15]
(13) Brouwer, D. M. J. Catal. 1962, 1, 22.
-
[16]
(14) Haw, J. F.; Richardson, B. R.; Oshiro, I. S.; Lazo, N. D.; Speed, J. A. J. Am. Chem. Soc. 1989, 111, 2052.
-
[17]
(15) Kondo, J. N.; Wakabayashi, F.; Domen, K. Catal. Lett. 1998, 53, 215.
-
[18]
(16) Pu, M.; Li, Z. H.; Zhai, S. R.; Wu, D.; Sun, Y. H. Stud. Surf. Sci. Catal. 2003, 146, 737.
-
[19]
(17) Pu, M.; Li, Z. H.; ng, Y. J.; Wu, D.; Sun, Y. H. J. Mater. Sci. Lett. 2003, 22, 955.
-
[20]
(18) Li, H. Y.; Pu, M.; Chen, B. H. Acta Phys. -Chim. Sin. 2005, 21, 898.
-
[21]
[李会英, 蒲 敏, 陈标华. 物理化学学报, 2005, 21, 898. ]
-
[22]
(19) Benco, L.; Demuth, T.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Catal. 2002, 205, 147.
-
[23]
(20) Bhan, A.; Joshi, Y. V.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. B 2003, 107, 10476.
-
[24]
(21) Li, Y. F.; He, P.; Zhu, J. Q.; Liu, H.; Shao, Q.; Tian, H. P. J. Mol. Struc-theochem 2010, 940, 135.
-
[25]
(22) Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc. 2004, 126, 3300.
-
[26]
(23) Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B 2006, 110, 25950.
-
[27]
(24) Zheng, A.; Chen, L.; Yang, J.; Zhang, M.; Su, Y.; Yue, Y.; Ye, C.; Deng, F. J. Phys. Chem. B 2005, 109, 24273.
-
[28]
(25) Zheng, A.; Chen, L.; Yang, J.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Commun. 2005, 19, 2474.
-
[29]
(26) Zheng, A.; Liu, S. B.; Deng, F. Microporous Mesoporous Mat. 2009, 121, 158.
-
[30]
(27) Jacobs, P. A.; Martens, J. A.; Weitkamp, J.; Beyer, H. K. Faraday Discuss. Chem. Soc. 1981, 72, 353.
-
[31]
(28) Mortier, W. J.; Sauer, J.; Lercher, J. A.; Noller, H. J. Phys. Chem. 1984, 88, 905.
-
[32]
(29) Trombetta, M.; Armaroli, T.; Alejandre, A. G.; Solis, J. R.; Busca, G. Appl. Catal. A-Gen. 2000, 192, 125.
-
[33]
(30) Lomratsiri, J.; Probst, M.; Limtrakul, J. J. Mol. Graphics Modell. 2006, 25, 219.
-
[34]
(31) Lermer, H.; Draeger, M.; Steffen, J.; Unger, K. K. Zeolites 1985, 5, 131.
-
[35]
(32) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
[36]
(33) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
-
[37]
(34) Pantu, P.; Pabchanda, S.; Limtrakul, J. Chem. Phys. Chem. 2004, 5, 1901.
-
[38]
(35) Bobuatong, K.; Limtrakul, J. Appl. Catal. A-Gen. 2003, 253, 49.
-
[39]
(36) Kasuriya, S.; Namuangruk, S.; Treesukol, P.; Tirtowidjojo, M.; Limtrakul, J. J. Catal. 2003, 219, 320.
-
[40]
(37) Panjan, W.; Limtrakul, J. J. Mol. Struct. 2003, 654, 35.
-
[41]
(38) Namuangruk, S.; Tantanak, D.; Limtrakul, J. J. Mol. Catal. A: Chem. 2006, 256, 113.
-
[42]
(39) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
-
[43]
(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D. 01; Gaussian Inc. : Wallingford, CT, 2004.
-
[44]
(41) Föttinger, K.; Kinger, G.; Vinek, H. Appl. Catal. A: Gen. 2003, 249, 205.
-
[45]
(42) Krossner, M.; Sauer, J. J. Phys. Chem. 1996, 100, 6199.
-
[46]
(43) Viruela-Martin, P.; Zicovich-Wilson, C. M.; Corma, A. J. Phys. Chem. 1993, 97, 13713.
-
[47]
(44) Clark, M. C.; Subramaniam, B. AIChE J. 1999, 45, 1559.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[4]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[5]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[6]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[7]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[8]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[9]
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
-
[10]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[11]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[12]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[13]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Li Zhou , Dongyan Tang , Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037
-
[16]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[17]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[18]
Xiaolei Jiang , Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052
-
[19]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[20]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[1]
Metrics
- PDF Downloads(1075)
- Abstract views(2782)
- HTML views(7)