Citation: TIAN Ying, WANG Jing-Ri, LIU Ming, SHI Kun, YANG Feng-Lin. Redox Stability of Polypyrrole in Aqueous Electrolyte Solutions by a Recurrent Potential Pulse Technique[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1116-1121. doi: 10.3866/PKU.WHXB20110515 shu

Redox Stability of Polypyrrole in Aqueous Electrolyte Solutions by a Recurrent Potential Pulse Technique

  • Received Date: 1 December 2010
    Available Online: 1 April 2011

    Fund Project: 国家自然科学基金(51078050)资助项目 (51078050)

  • The recurrent potential pulse (RPP) technique is an alternative and effective technique for redox stability measurement. We investigated the electrochemical redox stability of polypyrrole (ppy) films doped with sodium p-toluenesulfonate by RPP technique in this study. The reduction charge (Qred) and the ratio of reduction and oxidation charges (Qred/Qox) obtained from the switching potentials in aqueous solutions of H2SO4, Na2SO4, and NaOH were calculated to describe the reversibility of ppy at the applied potential windows. We found that the irreversible overoxidation strongly depended on the pH value of the supporting electrolytes and on the switching potentials. The onset of the overoxidation potential is 0.8 V in H2SO4 solution while it is only 0.5 V in Na2SO4 solution. In NaOH solution, overoxidation occurs at any potential indicating that the existence of OH- ions is directly responsible for overoxidation.

  • 加载中
    1. [1]

      (1) Kotz, R.; Carlen M. Electrochim Acta 2000, 45, 2483.

    2. [2]

      (2) Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791.

    3. [3]

      (3) Svirskis, D.; Wright, B. E.; Travas-Sejdic, J.; Rodgers, A.; Sanjay, G. Sensor. Actuat. B-Chem. 2010, 15, 97.

    4. [4]

      (4) Debiemme-Chouvy, C.; Tran, T. T. M. Electrochem. Commun. 2008, 10, 947.

    5. [5]

      (5) Palmisano, F.; Malitesta, C.; Centonze, D.; Zambonin, P. G. Anal. Chem. 1995, 67, 2207.

    6. [6]

      (6) Jaramillo, A.; Spurlock, L. D.; Young, V.; Brajter-Toth, A. Analyst 1999, 124, 1215.

    7. [7]

      (7) Otero, T. F.; Marquez, M.; Suarez, I. J Phys. Chem. B 2004, 108, 15429.

    8. [8]

      (8) Lim, V. W. L.; Kang, E. T.; Neoh, K. G. Macromol. Chem. Phys. 2001, 202, 2824.

    9. [9]

      (9) Forsyth, M.; Truong, V. T. Polymer 1995, 36, 725.

    10. [10]

      (10) Gao, M.; Zi, B.; Chen, B. J. Electroanal. Chem. 1994, 373, 141.

    11. [11]

      (11) Brie, M.; Turca, R.; Mihut, A. Mater. Chem. Phys. 1997, 49, 174.

    12. [12]

      (12) Fernández, I.; Trueba, M.; Núnez, C. A. R. J. Surf. Coat. Tech. 2005, 191, 134.

    13. [13]

      (13) Mostany, J.; Scharifker, B. R. Synth. Met. 1997, 87, 179.

    14. [14]

      (14) Fermín, D. J.; Teruel, H.; Scharifker, B. R. J. Electroanal. Chem. 1996, 401, 207.

    15. [15]

      (15) Uyar, T.; Toppare, L.; Hacaloglu, J. Synth. Met. 2001, 123, 335.

    16. [16]

      (16) Zou, X. Q.; Shen, Y.; Peng, Z. Q.; Zhang, L.; Bi, L. H.; Wang, Y. L. J. Electroanal. Chem. 2004, 566, 63.

    17. [17]

      (17) Arrigan, D. W. M.; Gray, D. S. Anal. Chim. Acta 1999, 402, 159.

    18. [18]

      (18) Visy, C.; Kriván, E.; Peintler, G. J. Electroanal. Chem. 1999, 462, 1.

    19. [19]

      (19) Rodriguez, I.; Scharifker, B. R.; Mostany, J. J. Electroanal. Chem. 2000, 491, 117.

    20. [20]

      (20) Ghosh, S.; Bowmaker, G. A.; Cooney, P. P.; Seakins, J. M. Synth. Met. 1998, 95, 63.

    21. [21]

      (21) Lewis, T. W.; Wallace, G. G.; Kim, C. Y.; Kim, D. Y. Synth. Met. 1997, 84, 403.

    22. [22]

      (22) Hyodo, K. Electrochim. Acta 1994, 39, 265.

    23. [23]

      (23) Pyo, M.; Reynolds, J. R.; Warren, L. F.; Marcy H. O. Synth. Met. 1994, 68, 71.

    24. [24]

      (24) Chu, S. Y.; Kilmartin, P. A.; Travas-Sejdic, J. Synth. Met. 2009, 159, 2286.

    25. [25]

      (25) Yoon, C. O.; Sung, H. K.; Kim, J. H.; Barsonkow, E.; Kim, J. H.; Lee, H. Synth. Met. 1999, 99, 201.

    26. [26]

      (26) Tian, Y.; Yang, F. L.; Yang, W. S. Synth. Met. 2006, 156, 1052.

    27. [27]

      (27) Li, Y.; Qian, R. Electrochim. Acta 2000, 45, 1727.


  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    6. [6]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    7. [7]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(954)
  • Abstract views(2654)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return