Citation: YUE Dong, ZHANG Jian-Wen, ZHANG Jing-Bo, LIN Yuan. Preparation of PbS Quantum Dots Using Inorganic Sulfide as Precursor and Their Characterization[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1239-1243. doi: 10.3866/PKU.WHXB20110513 shu

Preparation of PbS Quantum Dots Using Inorganic Sulfide as Precursor and Their Characterization

  • Received Date: 14 January 2011
    Available Online: 31 March 2011

    Fund Project: 国家自然科学基金(20873162) (20873162)污染控制与资源化研究国家重点实验室开放课题(PCRRF09006)资助项目 (PCRRF09006)

  • PbS semiconductor quantum dots with different particle sizes were successfully prepared by the colloidal chemistry method according to the theory of fast nucleation at high temperature and slow growth at low temperature. Sodium sulfide was used as a sulfur precursor because it is odorless and is less noxious, which allows it to be classified as a green precursor. Oleic acid was used as a stabilizing agent to control the particle growth and it thus assisted in the formation of monodisperse PbS quantum dots. The crystalline structures, morphology, and particle size of the quantum dots were characterized by powder X-ray diffraction and high-resolution transmission electron microscopy. The quantum size effect of the PbS nanoparticles was analyzed by visible near-infrared (Vis-NIR) absorption spectroscopy. The mean size of the PbS quantum dots increased with a decrease in the concentration of oleic acid. A possible growth mechanism for the PbS nanoparticles was also discussed.

  • 加载中
    1. [1]

      (1) Henglein, A . Chem. Rev. 1989, 89, 1861.

    2. [2]

      (2) Dutta, A. K.; Ho, T.; Zhang, L.; Stroeve, P. Chem. Mater. 2000, 12, 1042.

    3. [3]

      (3) Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. J. Chem. Phys. 1987, 87, 7315.

    4. [4]

      (4) Hirata, H.; Higashiyama, K. Bull. Chem. Soc. Jpn. 1971, 44, 2420.

    5. [5]

      (5) Nair, P. K.; mezdaza, O.; Nair, M. T. S. Adv. Mater. Opt. Electron. 1992, 1, 139.

    6. [6]

      (6) Gadenne, P.; Yagil, Y.; Deutscher, G. J. Appl. Phys. 1989, 66, 3019.

    7. [7]

      (7) Chaudhuri, T. K.; Chatterjes, S. Proc. Int. Conf. Thermoelectr. 1992, 11, 40.

    8. [8]

      (8) Kane, R. S.; Cohen, R. E.; Silbey, R. J. J. Phys. Chem. 1996, 100, 7928.

    9. [9]

      (9) Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5, 865.

    10. [10]

      (10) Zeng, Z.; Wang, S.; Yang, S. Chem. Mater. 1999, 11, 3365.

    11. [11]

      (11) Wang, S.; Yang, S. Langmuir 2000, 16, 389.

    12. [12]

      (12) Yu, D.; Wang, D.; Zhang, S. Liu, X.; Qian, Y. J. Cryst. Growth 2003, 249, 195.

    13. [13]

      (13) Trindade, T.; O′Brien, P.; Zhang, X. M.; Motevalli, M. J. Mater. Chem. 1997, 7, 1011.

    14. [14]

      (14) Wang, D.; Yu, D.; Shao, M. S. Liu, X.; Yu, W.; Qian, Y. J. Cryst. Growth 2003, 257, 384.

    15. [15]

      (15) Wang, S. F.; Gu, F.; Lu, M. K. Langmuir 2006, 22, 398.

    16. [16]

      (16) Ding, Y. H.; Liu, X. X.; Guo, R. J. Cryst. Growth 2007, 307, 145.

    17. [17]

      (17) Ding, Y. H.; Liu, X. X.; Guo, R. Colloid. Surf. A-Physicochem. Eng. Asp. 2007, 296, 8.

    18. [18]

      (18) Hines, M. A.; Scholes, G. D. Adv. Mater. 2003, 15, 1844.

    19. [19]

      (19) Rogach, A. L.; Eychmüller, A.; Hickey, S. G.; Kershaw, S. V. Small 2007, 3, 536.

    20. [20]

      (20) Hyun, B.; Zhong, Y.; Bartnik, A. C.; Sun, L.; Abruna, H. D.; Wise, F. W.; odreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F. ACS Nano 2008, 2, 2206.

    21. [21]

      (21) Leventis, H. C.; O′Mahony, F.; Akhtar, J.; Afzaal, M.; O′Brien, P.; Haque, S. A. J. Am. Chem. Soc. 2010, 132, 2743.

    22. [22]

      (22) Lee, H.; Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Gr?tzel, M.; Nazeeruddin, M. K. Nano Lett. 2009, 9, 4221.

    23. [23]

      (23) Wang, P.; Wang, L.; Ma, B.; Li, B.; Qiu, Y. J. Phys. Chem. B 2006, 110, 14406.

    24. [24]

      (24) Yu, W. W.; Peng, X. Angew. Chem. Int. Edit. 2002, 41, 2368.

    25. [25]

      (25) Zhou, G. J.; Lu, M. K.; Xiu, Z. L.; Wang, S. F.; Zhang, H. P.; Zhou, Y. Y.; Wang, S. M. J. Phys. Chem. B 2006, 110, 6543.

    26. [26]

      (26) Wilson, A. J. C. Proc. Phys. Soc. London 1962, 80, 286.

    27. [27]

      (27) Zhao, N.; Osedach, T. P.; Chang, L. Y.; Geyer, S. M.; Wanger, D.; Binda, M. T.; Aran , A. C.; Bawendi, M. G.; Bulovic, V. ACS Nano 2010, 4, 3743.

    28. [28]

      (28) Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Gr?tzel, M.; Sargent, E. H. ACS Nano 2010, 4, 3374.

    29. [29]

      (29) Ju, T.; Graham, R. L.; Zhai, G.; Rodriguez, Y. W.; Breeze, A. J.; Yang, L.; Alers, G. B.; Carter, S. A. Appl. Phys. Lett. 2010, 97, 043106.

    30. [30]

      (30) Luther, J. M.; Gao, J.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Adv. Mater. 2010, 22, 3704.


  • 加载中
    1. [1]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    2. [2]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    9. [9]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    20. [20]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

Metrics
  • PDF Downloads(2144)
  • Abstract views(3460)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return