Citation: ZHANG Xiao-Jie, TANG Chang-Qing, JIN Zhi-Liang, LV ng-Xuan, LI Shu-Ben. Photocatalytic Reduction of Water to Hydrogen over Eosin Y/Pt/SiO2 Catalysts[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1143-1148. doi: 10.3866/PKU.WHXB20110511 shu

Photocatalytic Reduction of Water to Hydrogen over Eosin Y/Pt/SiO2 Catalysts

  • Received Date: 13 December 2010
    Available Online: 31 March 2011

    Fund Project: 国家重点基础研究发展规划 (973)(2007CB613305, 2009CB220003)资助项目 (973)(2007CB613305, 2009CB220003)

  • A novel efficient photoscatalytic system Eosin Y/Pt/SiO2 for photocatalytic reduction of water to hydrogen under visible light irradiation was constructed. The effects of parameters, such as the surface physical property of SiO2 (i.e., specific surface area), method of mixing Eosin Y and SiO2, and light intensity on catalyst properties for hydrogen evolution were investigated systemically. With increase of SiO2 specific surface area, the rate of hydrogen evolution increased. Either over high or low intensive irradiation is detrimental to obtain high quantum efficiency for hydrogen evolution. Compared to the Eosin Y adsorbed on SiO2 by an impregnation method, the composite system in which Eosin Y mixed with SiO2 physically in situ displayed higher rate and superior stability of hydrogen evolution.

  • 加载中
    1. [1]

      (1) Zhang, X. J.; Li, S. B.; Lü, G. X. J. Mol. Catal. (China) 2010, 24, 569.

    2. [2]

      [张晓杰, 李树本, 吕功煊. 分子催化, 2010, 24, 569.]

    3. [3]

      (2) Kalyanasundaram, K.; Dung, D. J. Phys. Chem. 1980, 84, 2551.

    4. [4]

      (3) Liu, X.; Li, Y. X. J. Mol. Catal. (China) 2010, 24, 71.

    5. [5]

      [刘 兴, 李越湘. 分子催化, 2010, 24, 71.]

    6. [6]

      (4) Shimidzu, T.; Iyoda, T.; Koide, Y. J. Am. Chem. Soc. 1985, 107, 35.

    7. [7]

      (5) Wu, Y. Q.; Jin, Z. L.; Li, Y. X.; Lü, G. X.; Li, S. B. J. Mol. Catal. (China) 2010, 24, 171.

    8. [8]

      [吴玉琪, 靳治良, 李越湘, 吕功煊, 李树本. 分子催化, 2010, 24, 171.]

    9. [9]

      (6) Mills, A.; Lawrence, C.; Douglas, P. J. Chem. Soc. Faraday Trans. 1986, 82, 2291.

    10. [10]

      (7) Zhang, X.; Shen, T. Chemistry 1995, No. 6, 8.

    11. [11]

      [张先付, 沈 涛. 化学通报, 1995, No. 6, 8.]

    12. [12]

      (8) Zhao, F. W.; Song, H.; Shang, J.; Wang, Q. J. Mol. Catal. (China) 2010, 24, 372.

    13. [13]

      [赵凤伟, 宋 寒, 尚 静, 汪 青. 分子催化, 2010, 24, 372.].

    14. [14]

      (9) Bi, Z. C.; Xie, O. S.; Yu, J. Y. J. Photochem. Photobiol. A: Chem. 1995, 85, 269.

    15. [15]

      (10) Li, J. L.; Li, J. H. J. Mol. Catal. (China) 2010, 24, 469.

    16. [16]

      [李金莲, 李金环. 分子催化, 2010, 24, 469.]

    17. [17]

      (11) Wang, Q.; Shang, J.; Zhao, F. W.; Li, J.; He, S. J. J. Mol. Catal. (China) 2010, 24, 537.

    18. [18]

      [汪 青, 尚 静, 赵凤伟, 李 静, 何松洁. 分子催化, 2010, 24, 537.].

    19. [19]

      (12) Liu, F. S.; Ji, R.; Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin. 2007, 23, 1899.

    20. [20]

      [ 刘福生, 吉 仁, 吴 敏, 孙岳明. 物理化学学报, 2007, 23, 1899.]

    21. [21]

      (13) Jin, Z. L.; Zhang, X. J.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Mol. Catal. A: Chem. 2006, 259, 275.

    22. [22]

      (14) Jin, Z. L.; Zhang, X. J.; Li, Y. X.; Li, S. B.; Lu, G. X. Catal. Commun. 2007, 8, 1267.

    23. [23]

      (15) Li, Q. Y.; Chen, L.; Lu, G. X. J. Phys. Chem. C 2007, 111, 11494.

    24. [24]

      (16) Li, Q. Y.; Jin, Z. L.; Peng, Z. G.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Phys. Chem. C 2007, 111, 8237.

    25. [25]

      (17) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Power Sources 2007, 166, 74.

    26. [26]

      (18) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. Appl. Surf. Sci. 2008, 254, 4452.

    27. [27]

      (19) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Phys. Chem. B 2009, 113, 2230.

    28. [28]

      (20) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Colloid Interface Sci. 2009, 333, 285.

    29. [29]

      (21) Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2008, 282, 117.

    30. [30]

      (22) Li, Y. X.; Guo, M. M.; Peng, S. Q.; Lu, G. X.; Li, S. B. Inter. J. Hydrogen Energy 2009, 34, 5629.

    31. [31]

      (23) Zhang, C. R.; Wu, Y. Z.; Chen, Y. H.; Chen, H. S. Acta Phys. -Chim. Sin. 2009, 25, 53.

    32. [32]

      [张材荣, 吴有智, 陈玉红, 陈宏善. 物理化学学报, 2009, 25, 53.]

    33. [33]

      (24) Willner, I.; Ford, W. E.; Otvos, J. W.; Calvin, M. Nature 1979, 280, 823.

    34. [34]

      (25) Calvin, M.; Willner, I.; Laane, C.; Otvos, J. W. J. Photochem. 1981, 17, 195.

    35. [35]

      (26) Calvin, M. J. Membr. Sci. 1987, 33, 137.

    36. [36]

      (27) Turro, N. J.; Barton, J. K.; Tomalia, D. A. Acc. Chem. Res. 1991, 24, 332.

    37. [37]

      (28) Yi, X. Y.; Wu, L. Z.; Tung, C. H. J. Phys. Chem. B 2000, 104, 9468.

    38. [38]

      (29) Dutta, P. K.; Vaidyalingam, A. S. Microporous Mesoporous Mat. 2003, 62, 107.

    39. [39]

      (30) Willner, I.; Otvos, J. W.; Calvin, M. J. Am. Chem. Soc. 1981, 103, 3203.

    40. [40]

      (31) Zhu, Y.; Shi, J.; Chen, H.; Shen, W.; Dong, X. Microporous Mesoporous Mat. 2005, 84, 218.

    41. [41]

      (32) Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X. Y J. Phys. Chem. B 2003, 107, 6668.

    42. [42]

      (33) Thomas, K. G.; Kamat, P. V. Acc. Chem. Res. 2003, 36, 888.

    43. [43]

      (34) Tada, H.; Kubo, M.; Inubushi, Y.; Ito, S. Chem. Commun. 2000, No. 11, 977.

    44. [44]

      (35) Moser, J. E.; Grätzel, M. J. Am. Chem. Soc. 1984, 106, 6557.

    45. [45]

      (36) Pelet, S.; Grätzel, M.; Moser, J. E. J. Phys. Chem. B 2003, 107, 3215.


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(1129)
  • Abstract views(2575)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return