Citation: OGUNSIPE Abimbola, NYOKONG Tebello. Solvent Effects on the Photophysicochemical Properties of Tetra(tert-butylphenoxy)phthalocyaninato Zinc(II)[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1045-1052. doi: 10.3866/PKU.WHXB20110508 shu

Solvent Effects on the Photophysicochemical Properties of Tetra(tert-butylphenoxy)phthalocyaninato Zinc(II)

  • Received Date: 9 December 2010
    Available Online: 28 March 2011

    Fund Project: The project was supported by the Department of Science and Technology (DST) (DST)National Research Foundation (NRF) of South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology and Rhodes University. (NRF)

  • The solvent viscosity dependence of the photophysical and photochemical properties of tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPPc) is presented. The fluorescence quantum yields (ΦF) and Stern-Volmer′s constant (KSV) for ZnTBPPc fluorescence quenching by benzoquinone in all the solutions followed a semi-empirical law that depends only on the solvent viscosity. ΦF values vary between 0.08 in tetrahydrofuran (THF) and 0.14 in dimethylsulphoxide (DMSO). Triplet quantum yields (ΦT) and lifetimes (τT) also exhibit clear solvent viscosity dependence with the values being higher in the most viscous solvents. The interaction of the ZnTBPPc triplet state with oxygen was found to be diffusion- controlled, but higher rate constants were observed in low-viscosity solvents like THF and toluene. Absolute values of singlet oxygen quantum yields (ΦΔ) were determined, and the values are comparable in all the solvents, which is attributed to the proximity of the ZnTBPPc triplet energies in different solvents.

  • 加载中
    1. [1]

      (1) Leznoff, C. C.; Lever, A. B. P. The Phthalocyanines: Properties and application, 1st ed.; Wiley: USA, 1986-1993.

    2. [2]

      (2) Mckeown, N. B. Phthalocyanine Materials—Synthesis, Structure and Function; Cambridge University Press: Cambridge, 1998.

    3. [3]

      (3) Kadish, K.; Smith, K. M.; Guilard, R. The Porphyrin Handbook; Academic Press: Boston, 2003.

    4. [4]

      (4) Nyokong, T.; Vilakazi, S. TALANTA 2003, 61, 27.

    5. [5]

      (5) Arguello, J.; Ma sso, H. A.; Landers, R.; Gushikem, Y. J. Electroanal. Chem. 2008, 617, 45.

    6. [6]

      (6) Wang, Z.; Mao, W.; Chen, H.; Zhang, F.; Fan, X.; Qian, G. Catl. Commun. 2006, 7, 518.

    7. [7]

      (7) Iliev, V.; Alexiev, V.; Bilyarska, L. J. Mol. Catl. A: Chem. 1999, 137, 15.

    8. [8]

      (8) Brasseur, N.; Ooellet, R.; Madeleine, C. L.; Van Lier, J. E. Br. J. Cancer 1999, 80, 1533.

    9. [9]

      (9) MacDonald, I. J.; Dougherty, T. J. J. Porphyrins Phthalocyanines 2001, 5, 105.

    10. [10]

      (10) Vrouenraets, M. B.; Visser, G. W. M.; Stigter, M.; Oppelaar, H.; Snow, G. B.; Van Dongen, G. A. M. S. Cancer Res. 2001, 61, 1970.

    11. [11]

      (11) Zhao, Z.; Ogunsipe, A. O.; Maree, M. D.; Nyokong, T. J. Porphyrins Phthalocyanines 2005, 9, 186.

    12. [12]

      (12) Yang, S. I.; Li, J.; Cho, H. S.; Kin, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2000, 10, 283.

    13. [13]

      (13) Kimura, M.; Nakada, K.; Yamaguchi, Y.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Chem. Commun. 1997, 1215.

    14. [14]

      (14) Wiederkehr, N. A. J. Braz. Chem. Soc. 1996, 7, 7.

    15. [15]

      (15) Ogunsipe, A.; Maree, D.; Nyokong, T. J. Mol. Struc. 2003, 650, 131.

    16. [16]

      (16) Ogunsipe, A.; Chen, J. Y.; Nyokong, T. New J. Chem. 2004, 28, 822.

    17. [17]

      (17) Beeby, A.; Parker, A. W.; Simpson, M. S. C.; Phillips, D. J. Photochem. Photobiol. B: Biol. 1992, 16, 73.

    18. [18]

      (18) Metz, J.; Schneider, O.; Hanack, M. Inorg. Chem. 1984, 23, 1065.

    19. [19]

      (19) Fery-Forgues, S.; Lavabre, D. J. Chem. Ed. 1999, 76, 1260.

    20. [20]

      (20) Maree, S.; Phillips, D.; Nyokong, T. J. Porphyrins Phthalocyanines 2002, 6, 17.

    21. [21]

      (21) Montalban, A.; Meunier, H.; Ostler, R.; Barrett, A.; Hoffman, B.; Rumbles, G. J. Phys. Chem. A. 1999, 103, 4352.

    22. [22]

      (22) Lakowikz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed; Kluwer Academic/Plenum Publishers: New York, 1999.

    23. [23]

      (23) Kubát, P.; Mosinger, J. J. Photochem. Photobiol. A: Chem., 1996, 96, 93.

    24. [24]

      (24) Kossanyi, J.; Chahraoui, D. Int. J. Photoenergy 2000, 2, 9.

    25. [25]

      (25) Tran-Thi, T. H.; Desforge, C.; Thiec, C. J. Phys. Chem. 1989, 93, 1226.

    26. [26]

      (26) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of photochemistry, 2nd ed.; M. Decker: New York, 1993.

    27. [27]

      (27) Law, W. F.; Liu, R. C. W.; Jiang, J.; Ng, D. K. P. Inorg. Chim. Acta 1997, 256, 147.

    28. [28]

      (28) Isa , H.; Kagaya, Y.; Matsushita, A. Chem. Lett. 2004, 33, 862.

    29. [29]

      (29) Naumov, A. O.; Kudrik, E. V.; Shaposhnikov, G. P. Chem. Hetero Compds. 2004, 40, 469.

    30. [30]

      (30) Ogunsipe, A.; Mahmut, M.; Atilla, D.; Gürek, A. G.; Ahsen, V.; Nyokong, T. Synth. Metals 2008, 158, 839.

    31. [31]

      (31) Natarajan, L. V.; Ricker, J. E.; Blankenship, R. E.; Chang, R. Photochem. Photobiol. 1984, 39, 301.

    32. [32]

      (32) Mills, A.; Thomas, M. D. Analyst 1998, 123, 1135.

    33. [33]

      (33) Losev, A. P.; Volkovich, D. I.; Tikhomirov, S. A. J. Appl. Spec. 1999, 66, 11.

    34. [34]

      (34) Bunce, N. J.; Hadley, M. Can. J. Chem. 1975, 53, 3240.

    35. [35]

      (35) Idowu, M.; Ogunsipe, A.; Nyokong, T. Spectrochim. Acta A 2007, 68, 995.

    36. [36]

      (36) Georghiou, S.; Gerke, L. S. Photochem. Photobiol. 1999, 69, 646.

    37. [37]

      (37) Taylor, J. R.; Adams, M. C.; Sibbett, W. Appl. Phys. B: Lasers and Optics 1980, 21, 13.

    38. [38]

      (38) F?rster, T.; Hoffmann, G. Z. Phys. Chem. 1971, 75, 63.

    39. [39]

      (39) Smith, G. J. J. Chem. Soc. Faraday Trans. 2 1982, 78, 769.

    40. [40]

      (40) Battino, R. Solubility Data Series; Pergamon Press: Oxford, 1981.

    41. [41]

      (41) Rios, A. O.; Mercadante, A. Z.; Borsarelli, C. D. Dyes and Pigments 2007, 74, 561.

    42. [42]

      (42) Turro, N. J. Modern Molecular Photochemistry; University Science Books: California, 1991.

    43. [43]

      (43) Spiller, W.; Kliesch, H.; Wohrle, D.; Hackbarth, S.; Roder, B.; Schnurpfeil, G. J. Porphyrins Phthalocyanines 1998, 2, 145.

    44. [44]

      (44) Hurst, J. R.; McDonald, J. D.; Schuster, G. B. J. Am. Chem. Soc. 1982, 104, 2065.

    45. [45]

      (45) Okamoto, M.; Tanaka, F. J. Phys. Chem. 1993, 97, 177.

    46. [46]

      (46) Aveline, B.; Delgado, O.; Brault, D. J. Chem. Soc. Faraday Trans. 1992, 88, 1971.

    47. [47]

      (47) Fuke, K.; Ueda, M.; Itoh, M. J. Am. Chem. Soc. 1983, 105, 1091.

    48. [48]

      (48) Nilsson, R.; Kearns, D. R. J. Phys. Chem. 1974, 78, 1681.


  • 加载中
    1. [1]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    2. [2]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    3. [3]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    4. [4]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    5. [5]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    8. [8]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    9. [9]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    10. [10]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    11. [11]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    12. [12]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    13. [13]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    14. [14]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    15. [15]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    16. [16]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    17. [17]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    18. [18]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    19. [19]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    20. [20]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

Metrics
  • PDF Downloads(1440)
  • Abstract views(2187)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return