Citation: HUANG Ying-Heng, TONG Zhang-Fa, WEI Teng-You, LI Bin. Reaction Kinetics of the Intermediate in Synthesis of LiCoPO4 by Solid-State Reaction[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1325-1334. doi: 10.3866/PKU.WHXB20110507 shu

Reaction Kinetics of the Intermediate in Synthesis of LiCoPO4 by Solid-State Reaction

  • Received Date: 25 November 2010
    Available Online: 25 March 2011

    Fund Project: 国家自然科学基金(20766001) (20766001) 广西青年科学基金(0728101) (0728101)广西教育厅科研项目(200505083)资助 (200505083)

  • A precursor NH4CoPO4 containing Li+ was synthesized using a low temperature solid-state reaction with ammonium dihydrogen phosphate, cobalt acetate, and lithium hydroxide. LiCoPO4 powder was manufactured by high temperature baking. The products were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that the formation of the intermediates was effected by the baking atmosphere. NH4CoPO4 containing Li+ was dehydrated and deaminated in air at 210?500 °C and then the (CoHPO4·LiCoPO4·Co2(OH)PO4·Li3PO4) intermediate (acid-base community) was emerged during the reaction process. The intermediate formation reaction mechanism followed the interfacial reaction power-law with an apparent activation energy of 50.0 kJ·mol-1. The kinetic function was found to be g(x)=(1-α)-1. The intermediate was dehydrated to form LiCoPO4 with an average apparent activation energy of 54.2 kJ·mol-1. The formation of the intermediate was not affected by the process of crystallization or non- crystallization of the materials. High temperatures accelerated the decomposition reaction of the intermediate and then the formation of LiCoPO4 crystals. A perfect crystal of LiCoPO4 was obtained by the decomposition of the intermediate at temperatures higher than 550 °C.

  • 加载中
    1. [1]

      (1) Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Wu, L.; Li, L. J.; Guo, H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916.

    2. [2]

      [郑俊超, 李新海, 王志兴, 李金辉, 伍 凌, 李灵均, 郭华军. 物理化学学报. 2009, 25, 1916.]

    3. [3]

      (2) Wolfenstine, J.; Allen, J. J. Power Sources 2004, 136, 150.

    4. [4]

      (3) Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6, 1144.

    5. [5]

      (4) Rissouli, K.; Benkhouja, K.; Ramos-Barrado, J. R.; Julien, C. Mater. Sci. Eng. B 2003, 98, 185.

    6. [6]

      (5) Okada, S.; Ueno, M.; Uebou, Y.; Yamaki, J. I. J. Power Sources 2005, 146, 565.

    7. [7]

      (6) ni, A.; Lezama, L.; Barberis, G. E.; Pizarro, J. L.; Arriortua, M. I.; Rojo, T. J. Magn. Magn. Mater. 1996, 164, 251.

    8. [8]

      (7) Brown, P. J.; Frsyth, J. B.; Tasset, F. Solid-State Sci. 2005, 7, 682.

    9. [9]

      (8) Santoro, R. P.; Segal, D. J.; Newnham, R. E. J. Phys. Chem. Solids 1966, 27, 119.

    10. [10]

      (9) Van Aken, B. B.; Rivera, J. P.; Schmid, H.; Fiebig, M. F. Nature 2007, 449, 702.

    11. [11]

      (10) Ehrenberg, H.; Bramnik, N. N.; Senyshyn, A.; Fuess, H. Solid State Sci. 2009, 11, 18.

    12. [12]

      (11) Bramnik, N. N.; Bramnik, K. G.; Baehtz, C.; Ehrenberg, H. J. Power Sources 2005, 145, 74.

    13. [13]

      (12) Wolfenstine, J.; Poese, B.; Allen, J. L. J. Power Sources 2004, 138, 281.

    14. [14]

      (13) Wolfenstine, J.; Read, J.; Allen, J. L. J. Power Sources 2007, 163, 1070.

    15. [15]

      (14) Wolfenstine, J.; Lee, U.; Poese, B.; Allen, J. L. J. Power Sources 2005, 144, 226.

    16. [16]

      (15) Gri rova, V.; Roussev, D.; Deniard, P.; Jobic, S. J. Phys. Chem. Solids 2005, 66, 1598.

    17. [17]

      (16) Deniard, P.; Dulac, A. M.; Roequefdte, X; Gri rova, V.; Lebacq, O.; Pasturel, A.; Jobic. S. J. Phys. Chem. Solids 2004, 65, 229.

    18. [18]

      (17) Han, D. W.; Kang, Y. M.; Yin, R. Z.; Song, M. S.; Kwon, H. S. Electrochem. Commun. 2009, 11, 137.

    19. [19]

      (18) Huang, Y. H; Tong, Z. F; Lan, J. J.; Chen, Y. Z. J. Yunnan University (Natural Science) 2010, 32, 314.

    20. [20]

      [黄映恒, 童张法, 蓝建京, 陈义族. 云南大学学报: 自然科学版, 2010, 32, 314.]

    21. [21]

      (19) Huang, Y. H; Tong, Z. F; Lan, J. J.; Chen, Y. Z. The Chinese Journal of Process Engineering 2010, 10, 179.

    22. [22]

      [黄映恒, 童张法, 蓝建京, 陈义族. 过程工程学报, 2010, 10, 179.]

    23. [23]

      (20) Huang, Y. H; Tong, Z. F; Liao, S; Lan, J. J.; Chen, Y. Z. Journal of Chemical Engineering of Chinese Universities 2010, 24, 967.

    24. [24]

      [黄映恒, 童张法, 廖 森, 蓝建京, 陈义族. 高校化学工程学报, 2010, 24, 967.]

    25. [25]

      (21) Koleva, G. V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 62, 1196.

    26. [26]

      (22) Koleva, G. V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 413.

    27. [27]

      (23) Ruan, Y. L.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 873.

    28. [28]

      [阮艳莉, 唐致远. 物理化学学报, 2008, 24, 873.]

    29. [29]

      (24) Conesa, J. A.; Marcilla, A.; Caballero, J. A.; Font, R. J. Anal. Appl. Pyrolysis 2001, 58-59, 617.

    30. [30]

      (25) Ozawa, T. J. Therm. Anal. 1970, 2, 301.

    31. [31]

      (26) Kissinger, H. E. J. Anal. Chem. 1957, 29, 1702.

    32. [32]

      (27) Sestak, J.; Berggren, G. Thermochim. Acta 1971, 3, 1


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    19. [19]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(1097)
  • Abstract views(2788)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return