Citation:
HUANG Ying-Heng, TONG Zhang-Fa, WEI Teng-You, LI Bin. Reaction Kinetics of the Intermediate in Synthesis of LiCoPO4 by Solid-State Reaction[J]. Acta Physico-Chimica Sinica,
;2011, 27(06): 1325-1334.
doi:
10.3866/PKU.WHXB20110507
-
A precursor NH4CoPO4 containing Li+ was synthesized using a low temperature solid-state reaction with ammonium dihydrogen phosphate, cobalt acetate, and lithium hydroxide. LiCoPO4 powder was manufactured by high temperature baking. The products were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that the formation of the intermediates was effected by the baking atmosphere. NH4CoPO4 containing Li+ was dehydrated and deaminated in air at 210?500 °C and then the (CoHPO4·LiCoPO4·Co2(OH)PO4·Li3PO4) intermediate (acid-base community) was emerged during the reaction process. The intermediate formation reaction mechanism followed the interfacial reaction power-law with an apparent activation energy of 50.0 kJ·mol-1. The kinetic function was found to be g(x)=(1-α)-1. The intermediate was dehydrated to form LiCoPO4 with an average apparent activation energy of 54.2 kJ·mol-1. The formation of the intermediate was not affected by the process of crystallization or non- crystallization of the materials. High temperatures accelerated the decomposition reaction of the intermediate and then the formation of LiCoPO4 crystals. A perfect crystal of LiCoPO4 was obtained by the decomposition of the intermediate at temperatures higher than 550 °C.
-
-
-
[1]
(1) Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Wu, L.; Li, L. J.; Guo, H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916.
-
[2]
[郑俊超, 李新海, 王志兴, 李金辉, 伍 凌, 李灵均, 郭华军. 物理化学学报. 2009, 25, 1916.]
-
[3]
(2) Wolfenstine, J.; Allen, J. J. Power Sources 2004, 136, 150.
-
[4]
(3) Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6, 1144.
-
[5]
(4) Rissouli, K.; Benkhouja, K.; Ramos-Barrado, J. R.; Julien, C. Mater. Sci. Eng. B 2003, 98, 185.
-
[6]
(5) Okada, S.; Ueno, M.; Uebou, Y.; Yamaki, J. I. J. Power Sources 2005, 146, 565.
-
[7]
(6) ni, A.; Lezama, L.; Barberis, G. E.; Pizarro, J. L.; Arriortua, M. I.; Rojo, T. J. Magn. Magn. Mater. 1996, 164, 251.
-
[8]
(7) Brown, P. J.; Frsyth, J. B.; Tasset, F. Solid-State Sci. 2005, 7, 682.
-
[9]
(8) Santoro, R. P.; Segal, D. J.; Newnham, R. E. J. Phys. Chem. Solids 1966, 27, 119.
-
[10]
(9) Van Aken, B. B.; Rivera, J. P.; Schmid, H.; Fiebig, M. F. Nature 2007, 449, 702.
-
[11]
(10) Ehrenberg, H.; Bramnik, N. N.; Senyshyn, A.; Fuess, H. Solid State Sci. 2009, 11, 18.
-
[12]
(11) Bramnik, N. N.; Bramnik, K. G.; Baehtz, C.; Ehrenberg, H. J. Power Sources 2005, 145, 74.
-
[13]
(12) Wolfenstine, J.; Poese, B.; Allen, J. L. J. Power Sources 2004, 138, 281.
-
[14]
(13) Wolfenstine, J.; Read, J.; Allen, J. L. J. Power Sources 2007, 163, 1070.
-
[15]
(14) Wolfenstine, J.; Lee, U.; Poese, B.; Allen, J. L. J. Power Sources 2005, 144, 226.
-
[16]
(15) Gri rova, V.; Roussev, D.; Deniard, P.; Jobic, S. J. Phys. Chem. Solids 2005, 66, 1598.
-
[17]
(16) Deniard, P.; Dulac, A. M.; Roequefdte, X; Gri rova, V.; Lebacq, O.; Pasturel, A.; Jobic. S. J. Phys. Chem. Solids 2004, 65, 229.
-
[18]
(17) Han, D. W.; Kang, Y. M.; Yin, R. Z.; Song, M. S.; Kwon, H. S. Electrochem. Commun. 2009, 11, 137.
-
[19]
(18) Huang, Y. H; Tong, Z. F; Lan, J. J.; Chen, Y. Z. J. Yunnan University (Natural Science) 2010, 32, 314.
-
[20]
[黄映恒, 童张法, 蓝建京, 陈义族. 云南大学学报: 自然科学版, 2010, 32, 314.]
-
[21]
(19) Huang, Y. H; Tong, Z. F; Lan, J. J.; Chen, Y. Z. The Chinese Journal of Process Engineering 2010, 10, 179.
-
[22]
[黄映恒, 童张法, 蓝建京, 陈义族. 过程工程学报, 2010, 10, 179.]
-
[23]
(20) Huang, Y. H; Tong, Z. F; Liao, S; Lan, J. J.; Chen, Y. Z. Journal of Chemical Engineering of Chinese Universities 2010, 24, 967.
-
[24]
[黄映恒, 童张法, 廖 森, 蓝建京, 陈义族. 高校化学工程学报, 2010, 24, 967.]
-
[25]
(21) Koleva, G. V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 62, 1196.
-
[26]
(22) Koleva, G. V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 413.
-
[27]
(23) Ruan, Y. L.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 873.
-
[28]
[阮艳莉, 唐致远. 物理化学学报, 2008, 24, 873.]
-
[29]
(24) Conesa, J. A.; Marcilla, A.; Caballero, J. A.; Font, R. J. Anal. Appl. Pyrolysis 2001, 58-59, 617.
-
[30]
(25) Ozawa, T. J. Therm. Anal. 1970, 2, 301.
-
[31]
(26) Kissinger, H. E. J. Anal. Chem. 1957, 29, 1702.
-
[32]
(27) Sestak, J.; Berggren, G. Thermochim. Acta 1971, 3, 1
-
[1]
-
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[8]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[12]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[13]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[14]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[15]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[16]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[19]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[20]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[1]
Metrics
- PDF Downloads(1097)
- Abstract views(2835)
- HTML views(17)