Citation: LONG Jin-Xing, GUO Bin, LI Xue-Hui, WANG Fu-Rong, WANG Le-Fu. Catalytic Decomposition of Cellulose in Cooperative Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 995-999. doi: 10.3866/PKU.WHXB20110506
-
Cellulose, the abundant and cost-ineffective resource, is considered to be a perfect alternative for the alleviation of energy crisis and environmental pollution. However, most processes for the treatment of cellulose are ri r currently as it is insoluble in water and conventional organic solvents due to its strong intra and inter-molecular hydrogen bonds, where the phase problem hampers its utilization widely. Here, we built a novel and efficient cooperative ionic liquid pairs system for the low temperature catalytic conversion of cellulose, which was constructed through the combination of an acidic ionic liquid catalyst and a cellulose soluble ionic liquid solvent. The catalytic decomposition behavior of microcrystal cellulose in this vi rous catalytic system was studied intensively by thermogravimetry (TG). Results show that the decomposition temperature of cellulose decreases greatly in all cooperative ionic liquid pairs, cellulose dissolved in ionic liquid solvents can be in situ catalytic decomposed by acidic ionic liquids. Furthermore, the decomposition temperature is dependent on the acidic strength of the ionic liquid catalysts, stronger acidity results in a lower decomposition temperature of the cellulose. Moreover, we found that cellulose can be decomposed at lower temperature when the ionic liquid with higher solubility of cellulose is used.
-
-
[1]
(1) Christensen, C. H.; Rass-Hansen, J.; Marsden, C. C.; Taarning, E.; Egeblad, K. Chemsuschem 2008, 1, 283.
-
[2]
(2) Himmel, M. E.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J. W.; Foust, T. D. Science 2007, 315, 804.
-
[3]
(3) Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; Lightfoot, H. D.; Manheimer, W.; Mankins, J. C.; Mauel, M. E.; Perkins, L. J.; Schlesinger, M. E.; Volk, T.; Wigley, T. M. L. Science 2002, 298, 981.
-
[4]
(4) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
-
[5]
(5) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
-
[6]
(6) Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.
-
[7]
(7) Zou, S. P.; Wu, Y. L.; Yang, M. D.; Li, C.; Tong, J. M. Energy Fuels 2009, 23, 3753.
-
[8]
(8) Balat, M. Energy Sources Part A. 2008, 30, 649.
-
[9]
(9) Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Angew. Chem. Int. Edit. 2005, 44, 3358.
-
[10]
(10) Lee, S. H.; Doherty, T. V.; Linhardt, R. J.; Dordick, J. S. Biotechnol. Bioeng. 2009, 102, 1368.
-
[11]
(11) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. J. Am. Chem. Soc. 2002, 124, 4974.
-
[12]
(12) Li, X. H.; Zhang, L.; Li, Q.; Geng, W. G.; Ye, Y. J.; Wang, L. F. Acta Phys. -Chim. Sin. 2004, 20, 1465.
-
[13]
[李雪辉, 张 磊, 李 琼, 耿卫国, 叶玉嘉, 王乐夫. 物理化学学报, 2004, 20, 1465.]
-
[14]
(13) Zhao, W. T.; Chen, H. X.; Zhou, J. J.; Liu, N. A. Acta Phys. -Chim. Sin. 2009, 25, 1756.
-
[15]
[赵伟涛, 陈海翔, 周建军, 刘乃安. 物理化学学报, 2009, 25, 1756.]
-
[16]
(14) Feng, J. L.; Zhang, J. G.; Zhang, T. L.; Cui, Y. Acta Phys. -Chim. Sin. 2010, 26, 2410.
-
[17]
[冯金玲, 张建国, 张同来, 崔 燕. 物理化学学报, 2010, 26, 2410.]
-
[18]
(15) Meng, G. G.; Kong, D. J.; Qi, X. L.; Xu, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 3017.
-
[19]
[蒙 根, 孔德金, 祁晓岚, 许中强. 物理化学学报, 2010, 26, 3017.]
-
[20]
(16) Lin, Y. C.; Cho, J.; Tompsett, G. A.; Westmoreland, P. R.; Huber, G. W. J. Phy. Chem. C 2009, 113, 20097.
-
[21]
(17) Zhang, H.; Zhao, F. Q.; Yi, J. H.; Zhang, X. H.; Hu, R. Z.; Xu, S. Y.; Ren, X. N. Acta Phys. -Chim. Sin. 2008, 24, 2263.
-
[22]
[张 衡, 赵凤起, 仪建华, 张晓宏, 胡荣祖, 徐司雨, 任晓宁. 物理化学学报, 2008, 24, 2263.]
-
[23]
(18) Chattopadhyay, J.; Kim, C.; Kim, R.; Pak, D. J. Ind. Eng. Chem. 2009, 15, 72.
-
[24]
(19) Yu, Z. S.; Ma, X. Q.; Liu, A. Energy Convers. Manage. 2009, 50, 561.
-
[25]
(20) Gui, J. Z.; Cong, X. H.; Liu, D.; Zhang, X. T.; Hu, Z. D.; Sun, Z. L. Catal. Commun. 2004, 5, 473.
-
[26]
(21) Wang, W.; Shao, L.; Cheng, W.; Yang, J.; He, M. Catal. Commun. 2008, 9, 337.
-
[27]
(22) Fei, Z. F.; Zhao, D. B.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. Chem. Eur. J. 2004, 10, 4886.
-
[28]
(23) Wasserscheid, P.; Sesing, M.; Korth, W. Green Chem. 2002, 4, 134.
-
[29]
(24) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168.
-
[30]
(25) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 5962.
-
[31]
(26) Adamovsky, O.; Kopp, R.; Hilscherova, K.; Babica, P.; Palikova, M.; Paskova, V.; Navratil, S.; Marsalek, B.; Blaha, L. Environ. Toxicol. Chem. 2007, 26, 2687.
-
[32]
(27) Handy, S. T.; Okello, M.; Dickenson, G. Org. Lett. 2003, 5, 2513.
-
[33]
(28) Yoshizawa-Fujita, M.; Johansson, K.; Newman, P.; MacFarlane, D. R.; Forsyth, M. Tetrahedron Lett. 2006, 47, 2755.
-
[34]
(29) Li, X. H.; Duan, H. L.; Pan, J. T.; Wang, L. F. Chin. J. Anal. Chem. 2006, 34(Suppl. 1) , 192.
-
[35]
[李雪辉, 段红丽, 潘锦添, 王乐夫. 分析化学, 2006, 34(Suppl. 1), 192.]
-
[36]
(30) Thornazeau, C.; Olivier-Bourbi u, H.; Magna, L.; Luts, S.; Gilbert, B. J. Am. Chem. Soc. 2003, 125, 5264.
-
[37]
(31) Kosan, B.; Michels, C.; Meister, F. Cellulose 2008, 15, 59.
-
[38]
(32) Pinkert, A.; Marsh, K. N.; Pang, S. S.; Staiger, M. P. Chem. Rev. 2009, 109, 6712.
-
[39]
(33) Ciolacu, D.; Popa, V. I. Cellul. Chem. Technol. 2006, 40, 445.
-
[40]
(34) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. J. Chem. Eng. Data 2004, 49, 954.
-
[41]
(35) Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S. Green Chem. 2009, 11, 417.
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[3]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[4]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[5]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[6]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[7]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[8]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[9]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[10]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[11]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[12]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[13]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[17]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[18]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[19]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[20]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[1]
Metrics
- PDF Downloads(1730)
- Abstract views(2817)
- HTML views(6)