Citation: JIA Ming, LAI Yan-Qing, TIAN Zhong-Liang, LIU Fang-Yang, LI Jie, XIN Peng-Fei, LIU Ye-Xiang. Electrodeposition Behavior of Silicon from Na3AlF6-LiF Melts[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1108-1115. doi: 10.3866/PKU.WHXB20110504 shu

Electrodeposition Behavior of Silicon from Na3AlF6-LiF Melts

  • Received Date: 27 December 2010
    Available Online: 25 March 2011

    Fund Project: 高等学校博士学科点专项科研基金(200805331120) (200805331120) 湖南省研究生科研创新项目(CX2009B036) (CX2009B036) 中南大学研究生学位论文创新基金(2010bsxt02) (2010bsxt02)

  • A fundamental electrochemical study of Si in Na3AlF6-LiF melts and electrowinning and electrorefining in a small-scale laboratory cell was conducted. Cyclic voltammograms showed that the reduction of Si proceeds by two successive electron transfers and the presence of the Si(II) species in the melt was confirmed. Galvanostatic electrolysis showed that the deposited silicon crystal does not form any dense or massive layer at the graphite cathode as other metals do, but it is generally dispersed in the deposit around the cathode. The co-deposition of Al and Si is possible when the reduction potentials are more negative than -1.8 V versus Pt. The purity of the deposited Si was higher than 99.9%. This study demonstrates the feasibility of very pure Si production by electrochemical methods.

  • 加载中
    1. [1]

      (1) Chandra, P. K.; David, B.; Joyce, F. S. Sol. Energy Mater. Sol. Cells 2002, 74, 77.

    2. [2]

      (2) Richard, M. S. Prog. Photovolt: Res. Appl. 2006, 14, 443.

    3. [3]

      (3) Alvin, D. C. Sol. Energy Mater. Sol. Cells 2006, 90, 2170.

    4. [4]

      (4) Zhang, X. D.; Zhao, Y.; Gao, Y. T. Acta Phys. Sin. 2005, 54, 4874.

    5. [5]

      [张晓丹, 赵 颖, 高艳涛, 朱 峰. 物理学报, 2005, 54, 4874. ]

    6. [6]

      (5) Li, J. X.; Lai, H.; Zhang, Z. C.; Zhuang, B.; Huang, Z. G. Acta Phys. -Chim. Sin. 2007, 23, 1301.

    7. [7]

      [李加新, 赖 恒, 张志城, 庄 彬, 黄志高. 物理化学学报, 2007, 23, 1301.]

    8. [8]

      (6) Zhang, Z. X.; Wang, E. K. Electrochemistry Principle and Method; Science Press: Beijing, 2000; pp 55-58.

    9. [9]

      [张祖训, 汪尔康. 电化学原理和方法. 北京: 科学出版社, 2000; 55-58.]

    10. [10]

      (7) Duan, S. Z.; Qiao, Z. Y. Molten Salt Chemistry-Principle and Application; Metallurgical Industry Press: Beijing, 1990; pp 220-223.

    11. [11]

      [段淑贞, 乔芝郁. 熔盐化学原理和应用. 北京: 冶金工业出版社, 1990; 220-223.]

    12. [12]

      (8) Monnier, R.; Barakat, D. Dual cell refining of silicon and germanium. U. S. Patent 3219561, 1965.

    13. [13]

      (9) Elwell, D. J. Appl. Electrochem. 1988, 8,15.

    14. [14]

      (10) Olson, J. M.; Carleton, K. L. J. Electrochem. Soc. 1981, 128, 2698.

    15. [15]

      (11) Robert, C.; Mattei, D.; Dennis, E.; Robert, S. J. Electrochem. Soc. 1981, 128, 1712.

    16. [16]

      (12) Rao, G. M.; Elwell, D.; Feigelson, R. S. J. Electrochem. Soc. 1980, 127, 1940.

    17. [17]

      (13) Rao, G. M.; Elwell, D.; Feigelson, R. S. J. Electrochem. Soc. 1981, 128, 1708.

    18. [18]

      (14) Olson, J. M.; Carleton, K. L. Process for producing silicon. U. S. Patent 4448651, 1984.

    19. [19]

      (15) Boen, R.; Bouteillon, J. J. Appl. Electrochem. 1983, 13, 277.

    20. [20]

      (16) Cohen, U.; Huggins, R. A. J. Electrochem. Soc. 1976, 123, 381.

    21. [21]

      (17) Jia, M.; Tian, Z. L. ; Lai, Y. Q.; Li, J.; Yi, J. G.; Yan, J. F.; Liu, Y. X. Acta Phys. Sin. 2010, 59, 1938.

    22. [22]

      [贾 明, 田忠良, 赖延清, 李 劼, 伊继光, 闫剑锋, 刘业翔. 物理学报 2010, 59, 1938.]

    23. [23]

      (18) Lai, Y. Q.; Jia, M.; Tian, Z. L.; Li, J.; Yi, J. G.; Yan, J. F.; Liu, Y. X. Metall. Mater. Trans. A 2010, 41, 929.

    24. [24]

      (19) Chen, G. Z.; Fray, D. J.; Farthing, T. W. Nature 2000, 407, 361.

    25. [25]

      (20) Yasuda, K.; Nohira, T.; Ito, Y. J. Phy. Chem. Sol. 2005, 66, 443.

    26. [26]

      (21) Jin, X. B.; Wang, D. H.; Hu, X. H.; Chen, G. Z. Angew. Chem. Int. Edit. Engl. 2004, 116, 751.


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

Metrics
  • PDF Downloads(1263)
  • Abstract views(2585)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return