Citation: ZHANG Hui-Min, HU Rui-Sheng, HU Jia-Nan, ZHANG Yu-Long. Preparation and Catalytic Activities of La2CoAlO6 for Methane Combustion[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1169-1175. doi: 10.3866/PKU.WHXB20110502 shu

Preparation and Catalytic Activities of La2CoAlO6 for Methane Combustion

  • Received Date: 13 January 2011
    Available Online: 24 March 2011

    Fund Project: 国家自然科学基金(20763003) (20763003) 教育部春晖计划(Z2007-1-01029) (Z2007-1-01029)内蒙古自然科学基金(2008 0404 MS 0123)资助项目 (2008 0404 MS 0123)

  • A novel rare earth double perovskite-type catalyst (La2CoAlO6) was prepared by the sol-gel method using citric acid as complex agent. The catalyst was characterized by X-ray powder diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), specific surface area (BET), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and magnetic property measurement. This catalyst was evaluated for methane combustion. The results showed that a single-phase rare earth double perovskite oxide La2CoAlO6 could be formed by calcination at 1100 °C for 3 h. La2CoAlO6 gives od catalytic activity for methane combustion. It has a light-off temperature (T10) of 434.1 °C and a total conversion temperature (T90) of 657.4 °C. Compared with the single rare earth perovskite-type oxides LaCoO3 and LaAlO3, the T10 decreased by 56.5 and 138.2 °C, and T90 decreased by 84.6 and 108.9 °C, respectively. The FT-IR results indicate that all the synthesized oxides possess perovskite-type structures. Furthermore, the La2CoAlO6 samples showed excellent catalytic activity for methane combustion, which could be related to the decrease in reduction temperature that was observed in the H2-TPR experiments. This was probably because of the increased oxygen mobility that was promoted by the presence of aluminum. In addition, the rare earth double perovskite-type oxide La2CoAlO6 has a platelet morphology and is resistant to sintering. We also found that the double perovskite oxide La2CoAlO6 had special magnetic properties.

  • 加载中
    1. [1]

      (1) Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Applied Catalysis A: General 2002, 234, 1.

    2. [2]

      (2) Xu, J. G.; Tian, Z. J.; Suo, Z. H.; Xu, X. F.; Qu, X. H.; Xu, Y. P.; Xu, L. S.; Lin, L. W. Chin. J. Catal. 2005, 26, 665.

    3. [3]

      [徐金光, 田志坚, 索掌怀, 徐秀峰, 曲秀华, 徐云鹏, 徐竹生, 林励吾. 催化学报, 2005, 26, 665.]

    4. [4]

      (3) Arosio, F.; Colussi, S.; Trovarelli, A.; Groppi, G. Applied Catalysis B: Environmental 2008, 80, 335.

    5. [5]

      (4) Xiao L. H.; Sun, K. P.; Xu, X. L.; Li, X. N. Catal. Commun. 2005, 6, 796.

    6. [6]

      (5) Dai, H. X.; He, H.; Li, P. Y.; Zi, X. H. Journal of the Chinese Rare Earth Society 2003, 21, 1.

    7. [7]

      [戴洪兴, 何 洪, 李佩珩, 訾学红. 中国稀土学报, 2003, 21, 1.]

    8. [8]

      (6) Nguyen, S. V.; Szabo, V.; Trong On, D.; Kaliaguine, S. Microporous Mesoporous Mat. 2002, 54, 51.

    9. [9]

      (7) Batiot-Dupeyrat, C.; Martinez-Ortega, F.; Ganneb, M.; Tatibouët, J. M. Applied Catalysis A: General 2001, 206, 205.

    10. [10]

      (8) Zhong, Z. Y.; Chen, K. D.; Ji, Y.; Yan, Q. J. Applied Catalysis A: General 1997, 156, 29.

    11. [11]

      (9) Kobayashi, K. I.; Kimura, T.; Sawada, H.; Terakura, K.; Tokura, Y. Nature 1998, 395, 677.

    12. [12]

      (10) Maignan, A.; Raveau, B.; Martin, C.; Hervieu, M. J. Solid State Chem. 1999, 144, 224.

    13. [13]

      (11) Miao, Y.; Yuan, H. K.; Chen, H. Acta Phys. -Chim. Sin. 2008, 24, 448.

    14. [14]

      [苗 月, 袁宏宽, 陈 洪. 物理化学学报, 2008, 24, 448.]

    15. [15]

      (12) Arulraj, A.; Ramesha, K.; palakrishnan, J.; Rao, C. N. R. J. Solid State Chem. 2000, 155, 233.

    16. [16]

      (13) Huang, Y. H.; Dass, R. I.; King, Z. L.; odenough, J. B. Science 2006, 312, 254.

    17. [17]

      (14) Falcón, H.; Barbero, J. A.; Araujo, G.; Casais, M. T.; Martínez- Lope, M. J.; Alonso, J. A; Fierro, J. L. G. Applied Catalysis B: Environmental 2004, 53, 37.

    18. [18]

      (15) Pecchi, G.; Campos, C.; Peňa, O.; Cadus, L. E. Journal of Molecular Catalysis A: Chemical 2008, 282, 158.

    19. [19]

      (16) Wei, Z. X.; Xu, Y. Q.; Liu, H. Y.; Hu, C. W. Journal of Hazardous Materials 2009, 165, 1056.

    20. [20]

      (17) Shaheen, R.; Bashir, J. Solid State Sciences 2010, 12, 1496.

    21. [21]

      (18) Roa-Rojas, J.; Salazar, C. M.; Llamosa, D. P.; Leon-Vanegas, A. A.; Tellez, D. A. L.; Pureur, P.; Dias, F. T.; Vieira, V. N. Journal of Magnetism and Magnetic Materials, 2008, 320, 104.

    22. [22]

      (19) Petrovi?, S.; Terlecki-Bari?evi?, A.; Karanovi?, L.; Kirilov-Stefanov, P.; Zduji?, M.; Dondur, V.; Paneva, D.; Mitov, I.; Raki?, V. Applied Catalysis B: Environmental 2008, 79, 186

    23. [23]

      (20) Qin, S.; Wang, R. C. Acta Geologica Sinica 2004, 78, 345.

    24. [24]

      [秦 善, 王汝成. 地质学报, 2004, 78, 345]

    25. [25]

      (21) Xu, X. F.; Suo, Z. H.; Li, D. L.; Qi, S. X.; An, L. D. J. Mol. Catal. 2001, 15, 259.

    26. [26]

      [徐秀峰, 索掌怀, 李大力, 齐世学, 安立敦. 分子催化, 2001, 15, 259.]

    27. [27]

      (22) Li, R. J.; Yu, C. C.; Dai, X. P.; Shen, S. K. Chin. J. Catal 2002, 23, 549.

    28. [28]

      [李然家, 余长春, 代小平, 沈师孔. 催化学报, 2002, 23, 549.]

    29. [29]

      (23) Tien-Thao, N.; Alamdari, H.; Zahedi-Niaki, M. H.; Kaliaguine, S. Applied Catalysis A: General 2006, 311, 204.

    30. [30]

      (24) La , R.; Bini, G.; Peňa, M. A.; Fierro, J. L. G. J. Catal. 1997, 167, 198.

    31. [31]

      (25) Ciambelli, P.; Cimino, S.; Lasorella, G.; Lisi, L.; De Rossi, S.; Faticanti, M.; Minelli, G.; Porta, P. Applied Catalysis B: Environmental 2002, 37, 231.

    32. [32]

      (26) Cimino, S.; Lisi, L.; De Rossi, S.; Faticanti, M.; Porta, P. Applied Catalysis B: Environmental 2003, 43, 397.

    33. [33]

      (27) Ruan, S. P.; Dong, W.; Wu, F. Q.; Wang, Y. W.; Yu, T.; Peng, Z. H.; Xuan, L. Acta Phys. -Chim. Sin. 2003, 19, 17.

    34. [34]

      [阮圣平, 董 玮, 吴凤清, 王永为, 于 涛, 彭增辉, 宣 丽. 物理化学学报, 2003, 19, 17.]


  • 加载中
    1. [1]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    13. [13]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(2834)
  • Abstract views(2797)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return