Citation:
ZHAO Gao-Feng, XIANG Bing, SHEN Xue-Feng, SUN Jian-Min, BAI Yan-Zhi, WANG Yuan-Xu. Structures and Stabilities of Small Zirconium Oxide Clusters[J]. Acta Physico-Chimica Sinica,
;2011, 27(05): 1095-1102.
doi:
10.3866/PKU.WHXB20110440
-
The geometric structures and stabilities of small ZrmOn (1≤m≤5, 1≤n≤2m) clusters were studied using density functional theory (DFT) calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation (GGA). The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small “core” zirconium clusters. In general, the O atoms prefer the bridge sites along the Zrm skeleton. The ground-state structures of the (ZrO2)3 and (ZrO2)5 clusters are consistent with coordination number rules and bonding regularity. The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed. We found that the ZrmO2m-1 clusters (not including Zr4O7) had the largest fragmentation energy among the clusters with the same number of zirconium atoms.
-
-
-
[1]
(1) Cox, P. A. Transition Metal Oxides; Clarendon: Oxford, 1992.
-
[2]
(2) Rao, C. N.; Raveau, B. Transition Metal Oxides; Wiley: New York, 1998.
-
[3]
(3) Hayashi, C.; Uyeda, R.; Tasaki, A. Ultra-Fine Particles; Noyes: Westwood, 1997.
-
[4]
(4) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.
-
[5]
(5) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994.
-
[6]
(6) Gates, B. C. Chem. Rev. 1995, 95, 511.
-
[7]
(7) (a) Clair, T. P. St.; odman, D. W. Top. Catal. 2000, 13, 5.
-
[8]
(b) Wallace, W. T.; Min, B. K.; odman, D. W. ibid. 2005, 34, 17.
-
[9]
(8) Jia, X. T.; Yang, W.; Qin, M. H.; Li, J. P. J. Magn. Magn. Mater. 2009, 321, 2354
-
[10]
(9) Zirconia Engineering Ceramics. In Key Engineering Materials; Kisi, E. Ed.; Trans Tech. Publications, 1998; pp 153-154.
-
[11]
(10) Brune, H. Surf. Sci. Rep. 1998, 31, 121.
-
[12]
(11) Liu, S. D.; Bonig, L.; Metiu, H. Phys. Rev. B 1995, 52, 2907.
-
[13]
(12) Castleman , A. W., Jr.; Jena, P. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10552.
-
[14]
(13) Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2664.
-
[15]
(14) Martin, T. P.; Bergmann, T. J. Chem. Phys. 1989, 90, 6664.
-
[16]
(15) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Bordas, C.; Paulig, F.; Viallon, J.; Chevaleyre, J. Phys. Rev. Lett. 1998, 80, 2817.
-
[17]
(16) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Paulig, F.; Viallon, J.; Bordas, C.; Chevaleyre, J. J. Chem. Phys. 2000, 112, 6228.
-
[18]
(17) Ziemann, P. J.; Castleman, A. W., Jr. Phys. Rev. B 1991, 44, 6488.
-
[19]
(18) Ziemann, P. J.; Castleman, A. W., Jr. J. Chem. Phys. 1991, 94, 718.
-
[20]
(19) Saunders, W. A. Phys. Rev. B 1988, 37, 6583.
-
[21]
(20) Wilson, M. J. Phys. Chem. B 1997, 101, 4917.
-
[22]
(21) Liu, H. T.; Wang, S. Y.; Zhou, G.; Wu, J.; Duan, W. H. J. Chem. Phys. 2007, 126, 134705.
-
[23]
(22) Ding, X. L.; Xue, W.; Ma, Y. P.; Wang, Z. C.; He, S. G. J. Chem. Phys. 2009, 130, 014303.
-
[24]
(23) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.
-
[25]
(24) Kaufman, M.; Muenter, J.; Klemperer, W. J. Chem. Phys. 1967, 47, 3365.
-
[26]
(25) Linevsky, M. J. Proceedings of the First Meeting of the Interagency Chemical Rocket Propulsion Group on Thermochemistry Chemical Propulsion Information Agency, New York, 1963.
-
[27]
(26) Brugh, D. J.; Suenram, R. D. J. Chem. Phys. 1999, 111, 3526.
-
[28]
(27) Foltin, M.; Stueber, G. J.; Bernstein, E. R. J. Chem. Phys. 2001, 114, 8971.
-
[29]
(28) Chen, S. G.; Yu, M. Y.; Hu, B. G.; Wang, X.; Liu, Y. C.; Yu, S. Q.; Zhang, W. W.; Yin, Y. S. J. Chin. Ceram. Soc. 2007, 35, 46.
-
[30]
(29) Takashi, A.; Wataru, H.; Shige, O. J. Chem. Phys. 2002, 117, 24.
-
[31]
(30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
-
[32]
(31) Delley, B. J. Chem. Phys. 1990, 92, 508; 2000, 113, 7756; DMol3 is available as part of Material Studio.
-
[33]
(32) Wang, C. C.; Zhao, R. N.; Hang, J. G. J. Chem. Phys. 2006, 124, 194301.
-
[34]
(33) Huber, K. P.; Herzberg, G. Constant of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
-
[35]
(34) Weltner, W., Jr.; Mcleod, D., Jr. J. Phys. Chem. 1965, 69, 488.
-
[36]
(35) Mcintyre, N. S.; Thompson, K. R.; Weltner, W., Jr. J. Phys. Chem. 1971, 75, 3243.
-
[37]
(36) Siegbahn, P. E. M. J. Phys. Chem. 1993, 97, 9096.
-
[38]
(37) Lu, W. C.; Wang, C. Z.; Nguyen, V.; Schmidt, M. W.; rdon, M. S.; Ho, K. M. J. Phys. Chem. A 2003, 107, 6936.
-
[39]
(38) Chu, T. S.; Zhang, R. Q.; Cheng, J. F. J. Phys. Chem. B 2001, 105, 1705.
-
[40]
(39) Jones, N. O.; Reddy, B. V.; Rasouli, F. Phys. Rev. B 2005, 72, 165411.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[3]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[7]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[8]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[9]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[10]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[13]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[14]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[15]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[16]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[17]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[20]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[1]
Metrics
- PDF Downloads(1290)
- Abstract views(2861)
- HTML views(71)