Citation: ZHAO Gao-Feng, XIANG Bing, SHEN Xue-Feng, SUN Jian-Min, BAI Yan-Zhi, WANG Yuan-Xu. Structures and Stabilities of Small Zirconium Oxide Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1095-1102. doi: 10.3866/PKU.WHXB20110440 shu

Structures and Stabilities of Small Zirconium Oxide Clusters

  • Received Date: 21 December 2010
    Available Online: 18 March 2011

    Fund Project: 国家自然科学基金(10804027, 11011140321)资助项目 (10804027, 11011140321)

  • The geometric structures and stabilities of small ZrmOn (1≤m≤5, 1≤n≤2m) clusters were studied using density functional theory (DFT) calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation (GGA). The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small “core” zirconium clusters. In general, the O atoms prefer the bridge sites along the Zrm skeleton. The ground-state structures of the (ZrO2)3 and (ZrO2)5 clusters are consistent with coordination number rules and bonding regularity. The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed. We found that the ZrmO2m-1 clusters (not including Zr4O7) had the largest fragmentation energy among the clusters with the same number of zirconium atoms.

  • 加载中
    1. [1]

      (1) Cox, P. A. Transition Metal Oxides; Clarendon: Oxford, 1992.

    2. [2]

      (2) Rao, C. N.; Raveau, B. Transition Metal Oxides; Wiley: New York, 1998.

    3. [3]

      (3) Hayashi, C.; Uyeda, R.; Tasaki, A. Ultra-Fine Particles; Noyes: Westwood, 1997.

    4. [4]

      (4) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.

    5. [5]

      (5) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994.

    6. [6]

      (6) Gates, B. C. Chem. Rev. 1995, 95, 511.

    7. [7]

      (7) (a) Clair, T. P. St.; odman, D. W. Top. Catal. 2000, 13, 5.

    8. [8]

      (b) Wallace, W. T.; Min, B. K.; odman, D. W. ibid. 2005, 34, 17.

    9. [9]

      (8) Jia, X. T.; Yang, W.; Qin, M. H.; Li, J. P. J. Magn. Magn. Mater. 2009, 321, 2354

    10. [10]

      (9) Zirconia Engineering Ceramics. In Key Engineering Materials; Kisi, E. Ed.; Trans Tech. Publications, 1998; pp 153-154.

    11. [11]

      (10) Brune, H. Surf. Sci. Rep. 1998, 31, 121.

    12. [12]

      (11) Liu, S. D.; Bonig, L.; Metiu, H. Phys. Rev. B 1995, 52, 2907.

    13. [13]

      (12) Castleman , A. W., Jr.; Jena, P. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10552.

    14. [14]

      (13) Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2664.

    15. [15]

      (14) Martin, T. P.; Bergmann, T. J. Chem. Phys. 1989, 90, 6664.

    16. [16]

      (15) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Bordas, C.; Paulig, F.; Viallon, J.; Chevaleyre, J. Phys. Rev. Lett. 1998, 80, 2817.

    17. [17]

      (16) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Paulig, F.; Viallon, J.; Bordas, C.; Chevaleyre, J. J. Chem. Phys. 2000, 112, 6228.

    18. [18]

      (17) Ziemann, P. J.; Castleman, A. W., Jr. Phys. Rev. B 1991, 44, 6488.

    19. [19]

      (18) Ziemann, P. J.; Castleman, A. W., Jr. J. Chem. Phys. 1991, 94, 718.

    20. [20]

      (19) Saunders, W. A. Phys. Rev. B 1988, 37, 6583.

    21. [21]

      (20) Wilson, M. J. Phys. Chem. B 1997, 101, 4917.

    22. [22]

      (21) Liu, H. T.; Wang, S. Y.; Zhou, G.; Wu, J.; Duan, W. H. J. Chem. Phys. 2007, 126, 134705.

    23. [23]

      (22) Ding, X. L.; Xue, W.; Ma, Y. P.; Wang, Z. C.; He, S. G. J. Chem. Phys. 2009, 130, 014303.

    24. [24]

      (23) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.

    25. [25]

      (24) Kaufman, M.; Muenter, J.; Klemperer, W. J. Chem. Phys. 1967, 47, 3365.

    26. [26]

      (25) Linevsky, M. J. Proceedings of the First Meeting of the Interagency Chemical Rocket Propulsion Group on Thermochemistry Chemical Propulsion Information Agency, New York, 1963.

    27. [27]

      (26) Brugh, D. J.; Suenram, R. D. J. Chem. Phys. 1999, 111, 3526.

    28. [28]

      (27) Foltin, M.; Stueber, G. J.; Bernstein, E. R. J. Chem. Phys. 2001, 114, 8971.

    29. [29]

      (28) Chen, S. G.; Yu, M. Y.; Hu, B. G.; Wang, X.; Liu, Y. C.; Yu, S. Q.; Zhang, W. W.; Yin, Y. S. J. Chin. Ceram. Soc. 2007, 35, 46.

    30. [30]

      (29) Takashi, A.; Wataru, H.; Shige, O. J. Chem. Phys. 2002, 117, 24.

    31. [31]

      (30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.

    32. [32]

      (31) Delley, B. J. Chem. Phys. 1990, 92, 508; 2000, 113, 7756; DMol3 is available as part of Material Studio.

    33. [33]

      (32) Wang, C. C.; Zhao, R. N.; Hang, J. G. J. Chem. Phys. 2006, 124, 194301.

    34. [34]

      (33) Huber, K. P.; Herzberg, G. Constant of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.

    35. [35]

      (34) Weltner, W., Jr.; Mcleod, D., Jr. J. Phys. Chem. 1965, 69, 488.

    36. [36]

      (35) Mcintyre, N. S.; Thompson, K. R.; Weltner, W., Jr. J. Phys. Chem. 1971, 75, 3243.

    37. [37]

      (36) Siegbahn, P. E. M. J. Phys. Chem. 1993, 97, 9096.

    38. [38]

      (37) Lu, W. C.; Wang, C. Z.; Nguyen, V.; Schmidt, M. W.; rdon, M. S.; Ho, K. M. J. Phys. Chem. A 2003, 107, 6936.

    39. [39]

      (38) Chu, T. S.; Zhang, R. Q.; Cheng, J. F. J. Phys. Chem. B 2001, 105, 1705.

    40. [40]

      (39) Jones, N. O.; Reddy, B. V.; Rasouli, F. Phys. Rev. B 2005, 72, 165411.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(1290)
  • Abstract views(2861)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return