Citation: YUN Hong, LIN Chang-Jian, DU Rong-Gui. Anticorrosion Properties of Nano Anatase TiO2 Films Derived from Sol-Gel and Hydrothermal Crystallization[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1122-1127. doi: 10.3866/PKU.WHXB20110433 shu

Anticorrosion Properties of Nano Anatase TiO2 Films Derived from Sol-Gel and Hydrothermal Crystallization

  • Received Date: 7 December 2010
    Available Online: 17 March 2011

    Fund Project: 国家自然科学基金(50571085, 20773100, 21003089) (50571085, 20773100, 21003089)国家高技术研究发展专项(2009AA03Z327)资助项目 (2009AA03Z327)

  • Nano TiO2 films were applied to the surface of stainless steel (SS) by sol-gel and hydrothermal crystallization using Ti(O(CH2)3CH3)4 as a precursor. The properties of the TiO2 films were determined by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and Auger electron spectroscopy (AES). The corrosion performance of the TiO2 films was evaluated by electrochemical impedance spectroscopy (EIS) and polarization measurements. Anatase TiO2 films prepared by hydrothermal crystallization at 170 °C showed similar crystallization to those prepared by conventional calcination at 450 °C. The TiO2 prepared by the two methods were, however, obviously different from the surface structure and the material prepared by hydrothermal crystallization showed better anticorrosion performance in 3.5% (w) NaCl solution compared with the material prepared by calcination.

  • 加载中
    1. [1]

      (1) Bartók, M.; Molnár, Á. The Chemistry of Double-Bonded Functional Groups (Suppl. A3), Patai, S. Ed.; Wiley: New York, 1997; p 843.

    2. [2]

      (2) Gallezot, P.; Richard, D. Catal. Rev.-Sci. Eng. 1998, 40, 81.

    3. [3]

      (3) Ponec, V. Appl. Catal. A 1997, 149, 27.

    4. [4]

      (4) Hirschl, R.; Delbecq, F.; Sautet, P.; Hafner, J. J. Catal. 2003, 217, 354.

    5. [5]

      (5) Claus, P.; Brückner, A.; Mohr, C.; Hofmeister, H. J. Am. Chem. Soc. 2000, 122, 11430.

    6. [6]

      (6) Loffreda, D.; Delbecq, F.; Vigné, F.; Sautet, P. J. Am. Chem. Soc. 2006, 128, 1316.

    7. [7]

      (7) Milone, C.; In glia, R.; Schipilliti, L.; Crisafulli, C.; Neri, G.; Galvagno, S. J. Catal. 2005, 236, 80.

    8. [8]

      (8) Milone, C.; Crisafulli, C.; In glia, R.; Schipilliti, L.; Galvagno, S. Catal. Today 2007, 122, 341.

    9. [9]

      (9) Yang, Q. Y.; Zhu, Y.; Tian, L.; Pei, Y.; Qiao, M. H.; Fan, K. N. Acta Phys. -Chim. Sin. 2009, 25, 1853. [杨秋芸, 朱 渊, 田莉, 裴 燕, 乔明华, 范康年. 物理化学学报, 2009, 25, 1853.]

    10. [10]

      (10) Baillie, J. E.; Hutching, G. J. Chem. Commun. 1999, No. 21, 2151.

    11. [11]

      (11) Okumura, M.; Akita, T.; Haruta, M. Catal. Today 2002, 74, 265.

    12. [12]

      (12) Schimpf, S.; Lucas, M.; Mohr, C.; Rodemerck, U.; Brückner, A.; Radnik, J.; Hofmeister, H.; Claus, P. Catal. Today 2002, 72, 63.

    13. [13]

      (13) Pei, Y.; Guo, P. J.; Zhu, L. J.; Yan, S. R.; Qiao, M. H.; Fan, K. N. Stud. Surf. Sci. Catal. 2007, 170, 1174.

    14. [14]

      (14) Yang, Q. Y.; Zhu, Y.; Tian, L.; Xie, S. H.; Pei, Y.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal. A 2009, 369, 67.

    15. [15]

      (15) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.

    16. [16]

      (16) Zhang, L. X.; Yu, C. C.; Zhao, W. R.; Hua, Z. L.; Chen, H. R.; Li, L.; Shi, J. L. J. Non-Cryst. Solids 2007, 353, 4055.

    17. [17]

      (17) Chastain, J. andbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corporation: Eden Prairie, 1992; p 182.

    18. [18]

      (18) Zanella, R.; Louis, C.; Giorgio, S.; Touroude, R. J. Catal. 2004, 223, 328.

    19. [19]

      (19) Bailie, J. E.; Abdullah, H. A.; Anderson, J. A.; Rochester, C. H.; Richardson, N. V.; Hodge, N.; Zhang, J. G.; Burrows, A.; Kiely, C. J.; Hutchings, G. J. Phys. Chem. Chem. Phys. 2001, 3, 4113.

    20. [20]

      (20) Mohr, C.; Hofmeister, H.; Radnik, J.; Claus, P. J. Am. Chem. Soc. 2003, 125, 1905.

    21. [21]

      (21) Delbecq, F.; Sautet, P. J. Catal. 1995, 152, 217.


  • 加载中
    1. [1]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    6. [6]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    7. [7]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(1453)
  • Abstract views(2209)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return