Citation: MI Juan, WANG Yu-Ting, GAO Peng-Cheng, LI Wen-Cui. Effects of Thermal Treatment on the Electrochemical Behavior of Manganese Dioxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 893-899. doi: 10.3866/PKU.WHXB20110431 shu

Effects of Thermal Treatment on the Electrochemical Behavior of Manganese Dioxide

  • Received Date: 17 November 2010
    Available Online: 14 March 2011

    Fund Project: 教育部新世纪优秀人才计划(NCET-08-0075)资助项目 (NCET-08-0075)

  • Manganese dioxide (MnO2) was synthesized using a fluid phase method with potassium permanganate and manganous acetate as precursors. The obtained MnO2 was treated thermally at different temperatures. The structural transformation of MnO2, its electrochemical behavior as an electrode material for use in a supercapacitor were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physical adsorption, thermogravimetry (TG), cyclic voltammetry, and galvanostastic charge-discharge. The results indicate that the synthesized MnO2 can be assigned to its α phase and that it possesses a mesoporous feature with a high surface area of up to 253 m2·g-1. After a low temperature thermal treatment (<350 °C), the manganese oxide retained its α-MnO2 crystal structure and its specific surface area was found to be approximately 170 m2·g-1. The specific capacitance of the single electrode increased from 267 F·g-1 for untreated MnO2 to 286 F·g-1 for the sample treated at 250 °C. However, high temperature thermal treatment (>450 °C) results in a transformation of the manganese oxide structure to α-Mn2O3 and then to α-Mn3O4. Additionally, the surface area reduced to ca 30 m2·g-1 and this lead to a dramatic decrease in the specific capacitance of manganese oxide. The electrochemical cycling stability of manganese oxide improved noticeably after low temperature thermal treatment and the electrode retained a od rate performance at a scan rate of 50 mV·s-1.

  • 加载中
    1. [1]

      (1) Miller, J. R.; Simon, P. Science 2008, 321, 651.

    2. [2]

      (2) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic Plenum Publishers: New York, 1999.

    3. [3]

      (3) Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142(8): 2699.

    4. [4]

      (4) Brousse, T.; Taberna, P. L.; Crosnier, O.; Dugas, Romain.; Guillemet, P.; Scudeller, Y.; Zhou, Y. K.; Favier, F.; Bélanger, D.; Simon, P. J.Power Sources. 2007, 173, 633.

    5. [5]

      (5) Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosiner, O.; Bélanger, D. Electrochem. Soc. 2006, 153, A2171.

    6. [6]

      (6) Toupin, M.; Brousse, T.; Belanger, D. Chem. Mater. 2004, 16, 3184.

    7. [7]

      (7) Jones, D. J.; Wortham, E.; Rozière, J.; Favier, F.; Pascal, J. L.; Monconduit, L. Phys. Chem. Solids. 2004, 65, 235.

    8. [8]

      (8) Chin, S. F.; Pang, S. C.; Anderson, M. A. Electrochem. Soc. 2000, 147, A379.

    9. [9]

      (9) Pang, S. C.; Anderson, M. A.; Chapman, T. W. Electrochem. Soc. 2002, 149, A379.

    10. [10]

      (10) Shinomiya, T.; Gupta, V.; Miura, N. Electrochim Acta 2006, 51, 4412.

    11. [11]

      (11) Qu, D.; Shi, H. J.Power. Source. 1998, 74, 99.

    12. [12]

      (12) Qu, D. J. Power Sources. 2002, 109, 403.

    13. [13]

      (13) Xia, X. Battery Bimonthly 2006, 36, 195.

    14. [14]

      [夏 熙. 电 池, 2006, 36, 195.]

    15. [15]

      (14) Wagner, C. D.; Riggs, W. M.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy-A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation and Physical Electronics Division Publishers: Eden Prairie, Minn, 1979.

    16. [16]

      (15) Tian, Y.; Yan, J.W.; Liu, X. X.; Xue, R.;Yi, B. L. Acta Phys.-Chim. Sin. 2010, 26(8), 2151.

    17. [17]

      [田 颖, 阎景旺, 刘小雪, 薛 荣, 衣宝廉. 物理化学学学报, 2010, 26(8), 2151.]

    18. [18]

      (16) Kozawa, A. The manuel of Manganese Dioxide; Sichuan Science and Technology Press: Chen Du, 1994: 79-80; translated by Xia, Y.

    19. [19]

      [Kozawa, A. 二氧化锰手册. 夏 熙, 译. 成都: 四川科技出版社, 1994: 79-80.]

    20. [20]

      (17) Liu , K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.

    21. [21]

      (18) Subramanian, V.; Zhu, H.; Wei, B. J. Power Sources 2006, 159, 361.


  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    10. [10]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    20. [20]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

Metrics
  • PDF Downloads(1669)
  • Abstract views(2416)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return