Citation: FAN Min, LI Guo-Bao, WANG Dong-Wei, JIN Tou-Nan, LIAO Fu-Hui, LIN Jian-Hua. Synthesis, Structure and Characterization of Pb1-xTbxTi1-xMnxO3 (0≤x≤0.10) Solid Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 990-994. doi: 10.3866/PKU.WHXB20110428 shu

Synthesis, Structure and Characterization of Pb1-xTbxTi1-xMnxO3 (0≤x≤0.10) Solid Solutions

  • Received Date: 27 December 2010
    Available Online: 11 March 2011

    Fund Project: 国家自然科学基金(20771008) (20771008) 北京市教委重点基金(KM201010005019) (KM201010005019)科技部重大研究计划(2010CB833103)资助项目 (2010CB833103)

  • Solid solutions of Pb1-xTbxTi1-xMnxO3 (0≤x≤0.10) were synthesized by a traditional solid state reaction and characterized by powder X-ray diffraction. The solutions crystallize in the P4mm space group at room temperature. Differential scanning calorimetry (DSC) measurements were performed to obtain phase transition temperatures (Tc) for the samples, and these were found to decrease with an increase in the amount of doped Tb and Mn. The temperature dependent dielectric constant shows a peak close to the Tc, indicating that the corresponding phase transition is a ferroelectric phase transition. Magnetic measurements indicate that a paramagnetic to antiferromagnetic phase transition occurs at 25 and 29 K for Pb1-xTbxTi1-xMnxO3 with x=0.08 and x=0.10, respectively.

  • 加载中
    1. [1]

      (1) Jaffe, B.; Cook, W. R.; Jaffe, H. Piezoelectric Ceramics; New York: Academic, 1971.

    2. [2]

      (2) Uchino, K. Ferroelectric Devices; New York: Marcel Dekker, 2000.

    3. [3]

      (3) Scott, J. F.; Araujo, C. A. Science 1989, 246, 1400.

    4. [4]

      (4) Qi, T. T.; Grinberg, I.; Rappe, A. M. Phys. Rev. B 2010, 82, 134113.

    5. [5]

      (5) Datta, K.; Walker, D.; Thomas, P. A. Phys. Rev. B 2010, 82, 144108.

    6. [6]

      (6) Li, F.; Zhang, S. J.; Xu, Z.; Wei, X. Y.; Luo, J.; Shrouty, T. R. J. Am. Ceram. Soc. 2010, 93, 2731.

    7. [7]

      (7) Wu, J. G.; Zhu, J. L.; Xiao, D. Q.; Zhu, J. G.; Tan, J. Z.; Zhang, Q. L. Thin Solid Films 2008, 517, 1005.

    8. [8]

      (8) Hu, P. H.; Chen, J.; Deng, J. X.; Xing, X. R. J. Am. Chem. Soc. 2010, 132, 1925.

    9. [9]

      (9) Chen, J. G.; Qi, Y. F.; Shi, G. Y.; Yu, S. W.; Cheng, J. R. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 1820.

    10. [10]

      (10) Huang, W.; Jiang, S. W.; Li, Y. R.; Zhu, J.; Zhang, Y.; Wei, X. H.; Zeng, H. Z. Thin Solid Films 2006, 500, 138.

    11. [11]

      (11) Sun, C.; Wang, J. G.; Kang, H. J.; Chen, J.; Kim, M. J.; Xing, X. R. Dalton Trans. 2010, 39, 9952.

    12. [12]

      (12) Kaneshiro, J.; Uesu, Y. Jpn. J. Appl. Phys. 2010, 49, 09me02.

    13. [13]

      (13) Pontes, D. S. L.; Lon , E.; Pontes, F. M.; Pereira-Da-Silva, M. A.; da Silva, J. H. D.; Chiquito, A. J.; Pizani, P. S. J. Sol-Gel Sci. Technol. 2010, 55, 151.

    14. [14]

      (14) Birks, E.; Dunce, M.; Antonova, M.; Sternberg, A. Physica Status Solidi C-Current Topics in Solid State Physics 2009, 6, 2737.

    15. [15]

      (15) Amorin, H.; Jimenez, R.; Ricote, J.; Hungria, T.; Castro, A.; Alguero, M. Journal of Physics D-Applied Physics 2010, 43, 285401.

    16. [16]

      (16) Mastelaro, V. R.; Mascarenhas, Y. P.; Neves, P. P.; Mir, M.; Doriguetto, A. C.; Michalowicz, A.; Moscovici, J.; Lente, M. H.; Eiras, J. A. J. Appl. Phys. 2010, 107, 114103.

    17. [17]

      (17) Li, H. M.; Zhou, Y. Y.; Tian ,Y. F.; Li, X. D.; Guo, H. L.; Xiao, D. Q.; Zhu, J. G. Appl. Surf. Sci. 2010, 257, 1407.

    18. [18]

      (18) Rai, R.; Kholkin, A. L.; Sharma, S. J. Alloy. Compd. 2010, 506, 815

    19. [19]

      (19) Ranjan, R.; Raju, K. A. Phys. Rev. B 2010, 82, 054119.

    20. [20]

      (20) Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R. Science 2003, 299, 1719.

    21. [21]

      (21) Kimura, T.; to, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura Y. Nature 2003, 426, 55.

    22. [22]

      (22) Larson. A. C.; von Dreele, R. B. Report LAUR 86-748 Los Alamos National Laboratory, 1985.

    23. [23]

      (23) Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65.

    24. [24]

      (24) Vegard, L. Z. Physics 1921, 5, 17.

    25. [25]

      (25) Vegard, L. Z. Kristallogr. 1928, 67, 239.

    26. [26]

      (26) Jaffc, B.; Roth, R. S.; Marzullo, S. J. Res. Nat. Bur. Stand. 1955, 55, 239.

    27. [27]

      (27) Yu, H. C.; Ren, W.; Ye, Z. G. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2010, 57, 2177.

    28. [28]

      (28) Dwight, K.; Menyuk, N. Phys. Rev. 1960, 119, 1470.


  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    7. [7]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    8. [8]

      . . University Chemistry, 2024, 39(3): 0-0.

    9. [9]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    10. [10]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    11. [11]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    12. [12]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(999)
  • Abstract views(2437)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return