Citation: KONG De-Shuai, WANG Jian-Ming, PI Ou-Yang, SHAO Hai-Bo, ZHANG Jian-Qing. Electrochemical Fabrication and Pseudocapacitive Performance of a Porous Nanostructured Nickel-Based Complex Film Electrode[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 764-768. doi: 10.3866/PKU.WHXB20110427
-
A porous nickel film was prepared by the selective anodic dissolution of copper from an electrodeposited Ni-Cu alloy film. A porous nanostructured nickel-based complex film electrode was further fabricated by oxidizing the obtained porous nickel film using cyclic voltammetry in 1 mol·L-1 KOH solution. The physical properties and pseudocapacitive performance of the as-prepared film electrodes were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. The results of SEM, XRD, and XPS indicate that the obtained complex film electrode consists of Ni, Ni(OH)2, and NiOOH, and it has a porous nanostructure. The electrochemical experiments revealed that the as-prepared porous nanostructured nickel-based complex film electrode had a specific capacitance of 578 F·g-1 at a current density of 20 A·g-1 at the initial cycle and it gave a specific capacitance of 544 F·g-1 after 1000 cycles with a capacitance retention of 94%. The nanoporous structure enhances the accessibility of the KOH electrolyte and promotes reactive species transport within the electrode. The nanoporous Ni substrate may improve the electronic conductivity of the thin Ni(OH)2 film at its surfaces. The nanosized Ni(OH)2 grains can shorten the proton diffusion pathways in the bulk of the solid nickel hydroxide. These factors are responsible for the superior pseudocapacitive performance of the porous nanostructured nickel-based complex film electrode.
-
-
[1]
(1) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.
-
[2]
(2) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.
-
[3]
(3) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.
-
[4]
(4) Miller, J. R.; Simon, P. Science 2008, 321, 651.
-
[5]
(5) Wu, M. S.; Huang, Y. A.; Yang, C. H. J. Electrochem. Soc. 2008, 155, A798.
-
[6]
(6) Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699.
-
[7]
(7) Sugimoto, W.; Iwata, H.; Yasunaga, Y.; Murakami, Y.; Takasu, Y. Angew. Chem. Int. Edit. 2003, 42, 4092.
-
[8]
(8) Wu, M. S.; Huang, C. Y.; Lin, K. H. J. Power Sources 2009, 186, 557.
-
[9]
(9) Zhao, D. D.; Bao, S. J.; Zhou, W. J.; Li, H. L. Electrochem. Comm. 2007, 9, 869.
-
[10]
(10) Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1194.
-
[11]
(11) Zeng, W. W.; Huang, K. L.; Yang, Y. P.; Liu, S. Q.; Liu, R. S. Acta Phys. -Chim. Sin. 2008, 24, 263.
-
[12]
[曾雯雯, 黄可龙, 杨幼平, 刘素琴, 刘人生. 物理化学学报, 2008, 24, 263.]
-
[13]
(12) Hu, J.; Yuan, A. B.; Wang, Y. Q.; Wang, X. L. Acta Phys. -Chim. Sin. 2009, 25, 987.
-
[14]
[胡 洁, 袁安保, 王玉芹, 王秀玲. 物理化学学报, 2009, 25, 987.]
-
[15]
(13) Jeevanandam, P.; Koltypin, Y.; Gedanken, A. Nano Lett. 2001, 1, 263.
-
[16]
(14) Srinivasan, V.; Weidner, J. W. J. Electrochem. Soc. 2000, 147, 880.
-
[17]
(15) He, J. J.; Lindström, H.; Hagfeldt, A.; Lindquist, S. E. J. Phys. Chem. B 1999, 103, 8940.
-
[18]
(16) Liu, K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.
-
[19]
(17) Wang, Y. G.; Xia, Y. Y. Electrochim. Acta 2006, 51, 3223.
-
[20]
(18) Lee, S. H.; Tracy, C. E.; Pitts, J. R. Electrochem. Solid State Lett. 2004, 7, A299.
-
[21]
(19) Zhao, D. D.; Zhou, W. J.; Li, H. L. Chem. Mat. 2007, 19, 3882.
-
[22]
(20) Wu, M. S.; Wang, M. J. Electrochem. Solid State Lett. 2010, 13, A1.
-
[23]
(21) Chang, J. K.; Hsu, S. H.; Sun, I. W.; Tsai, W. T. J. Phys. Chem. C 2008, 112, 1371.
-
[24]
(22) Sun, L.; Chien, C. L.; Searson, P. C. Chem. Mat. 2004, 16, 3125.
-
[25]
(23) Medway, S. L.; Lucas, C. A.; Kowal, A.; Nichols, R. J.; Johnson, D. J. Electroanal. Chem. 2006, 587, 172.
-
[26]
(24) Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E. J. Phys. Chem. B 2002, 106, 1869.
-
[27]
(25) Hoflund, G. B.; Epling, W. S. Chem. Mat. 1998, 10, 50.
-
[28]
(26) Hosogai, S.; Tsutsumi, H. J. Power Sources 2009, 194, 1213.
-
[29]
(27) Wu, M. S.; Huang, Y. A.; Jow, J. J.; Yang, W. D.; Hsieh, C. Y.; Tsai, H. M. Int. J. Hydrog. Energy 2008, 33, 2921.
-
[1]
-
-
[1]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[2]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[3]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[6]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[7]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[8]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[9]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[10]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[11]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[12]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[13]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[14]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[15]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[16]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[17]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[18]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[19]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[20]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[1]
Metrics
- PDF Downloads(1931)
- Abstract views(3240)
- HTML views(4)