Citation: LIU Jian-Hua, YOU Dun, YU Mei, LI Song-Mei. Preparation of BaTiO3-BaFe12O19 Core-Shell Structure Particles by Homogeneous Coprecipitation[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1254-1260. doi: 10.3866/PKU.WHXB20110423 shu

Preparation of BaTiO3-BaFe12O19 Core-Shell Structure Particles by Homogeneous Coprecipitation

  • Received Date: 9 September 2010
    Available Online: 11 March 2011

    Fund Project: 国家自然科学基金(51001007)资助项目 (51001007)

  • BaTiO3-BaFe12O19 core-shell structure particles were obtained using the homogeneous coprecipitation method. The effects of temperature, molar ratio of urea to metal ions (R), and BaTiO3 concentration on the morphology and structure of the core-shell particles were investigated. The mechanism of formation for the BaTiO3-BaFe12O19 core-shell structure particles and their magnetic property were also discussed. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the morphology and structure of the BaTiO3-BaFe12O19 precursor core-shell structure particles and the BaTiO3-BaFe12O19 core-shell structure particles. A vibrating sample magnetometer (VSM) was used to characterize the magnetic property. The results indicated that the obtained sample possessed an integrated and smooth shell of about 10 nm in size and the metal ions precipitated completely after homogeneous coprecipitation when the sample was synthesized under the following conditions: 100 °C, R=180, and a BaTiO3 concentration of 2.5 g·L-1. A large amount of free particle impurities appeared if the temperature and R value were too high. The shell thickness of the BaTiO3-BaFe12O19 precursor core-shell structure particles tended to decrease as the BaTiO3 concentration increased. The BaFe12O19 phase in the shell began to form when the calcination temperature reached 900 °C. The mechanism of formation included the formation of BaFe2O4 by the reaction of crystalline α-Fe2O3 and BaCO3 initially, and this was followed by the reaction of BaFe2O4 and α-Fe2O3 to form the final BaFe12O19. As the temperature increased to 1000 °C, a complete BaFe12O19 shell was obtained. The saturation magnetization and coercivity of the BaTiO3-BaFe12O19 core-shell structure particles increased and decreased from 16.5 to 39.5 A·m2·kg-1 and from 340 to 316 kA·m-1, respectively, as the calcination temperature increased from 900 to 1000 °C.

  • 加载中
    1. [1]

      (1) Yang, Z. Z.; Niu, Z. W.; Lu, Y. F.; Hu, Z. B.; Han, C. C. Angew. Chem. Int. Edit. 2003, 42, 1943.

    2. [2]

      (2) Ravel, B.; Carpenter, E. E.; Harris, V. G. J. Appl. Phys. 2002, 91, 8195.

    3. [3]

      (3) Huo, Q. S.; Liu, J.; Wang, L. Q.; Jiang, Y. B.; Lambert, T. N.; Fang, E. J. Am. Chem. Soc. 2006, 128, 447.

    4. [4]

      (4) Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. J. Phys. Chem. B 2008, 112, 10443.

    5. [5]

      (5) Xu, X. B.; Ge, M.; Wang, C.; Jiang, J. Z. Appl. Phys. Lett. 2009, 95, 183112.

    6. [6]

      (6) Cushing, B. L.; Kolesnichenko, V. L.; O′Connor, C. J. Chem. Rev. 2004, 104, 3893.

    7. [7]

      (7) Lee, S. P.; Chen, Y. J.; Ho, C. M.; Chang, C. P.; Hong, Y. S. Mater. Sci. Eng. B 2007, 143, 1.

    8. [8]

      (8) Matijevic, E. Langmuir 1994, 10, 8.

    9. [9]

      (9) Matijevic, E. Chem. Mater. 1993, 5, 412.

    10. [10]

      (10) Zhen, G. A.; Pan, S. L.; Zhang, J. J. J. Phys. Chem. C 2009, 113, 2715.

    11. [11]

      (11) Buscaglia, M. T.; Buscaglia, V.; Viviani, M.; Nanni, P.; Hanuskova, M. J. Eur. Ceram. Soc. 2000, 20, 1997.

    12. [12]

      (12) Mali, A.; Ataie, A. Scripta Mater. 2005, 53, 1065.

    13. [13]

      (13) Yang, Y. D.; Gao, J. Q.; Li, J. F.; Viehland, D. J. Am. Ceram. Soc. 2010, 93, 362.

    14. [14]

      (14) Corral, F. V.; Bueno, B. D.; Carrillo, F. D.; Matutes, A. J. A. J. Appl. Phys. 2006, 99, 08J503

    15. [15]

      (15) Priya, S.; Islam, R.; Dong, S. X.; Viehland, D. J. Electroceram. 2007, 19, 147.

    16. [16]

      (16) Cheung, M. C.; Chan, H. L. W.; Choy, C. L. J. Mater. Sci. 2001, 36, 381.

    17. [17]

      (17) UI Haq, I.; Matijevic, E.; Akhtar, K. Chem. Mater. 1997, 9, 2659.

    18. [18]

      (18) Garg, A.; Matijevic, E. Langmuir 1988, 4, 38.

    19. [19]

      (19) Ocana, M.; Hsu, W. P. Langmuir 1991, 7, 2911.

    20. [20]

      (20) Ishikawa, T.; Matijevic, E. Langmuir 1988, 4, 26.

    21. [21]

      (21) Blanco, L. M. C.; Rand, B.; Riley, F. L. J. Eur. Ceram. Soc. 2000, 20, 107.

    22. [22]

      (22) Wang, J. P.; Liu, Y.; Mang, M. L.; Qiao, Y. J.; Xia, T. Chem. Res. Chin. Univ. 2008, 24, 525.

    23. [23]

      (23) Zhang, H. J.; Yao, X.; Zhang, L. Y. J. Eur. Ceram. Soc. 2002, 22, 835.

    24. [24]

      (24) Lisjak, D.; Drofenik, M. J. Eur. Ceram. Soc. 2006, 26, 3681.

    25. [25]

      (25) Chen, D. H.; Chen, Y. Y. J. Colloid Interface Sci. 2001, 235, 9.

    26. [26]

      (26) Silvia, E.; Jacobo, L. C.; Miguel, A. B. J. Magn. Magn. Mater. 2003, 260, 37.

    27. [27]

      (27) Lisjak, D.; Drofenik, M. J. Eur. Ceram. Soc. 2007, 27, 4515.

    28. [28]

      (28) Joonghoe, D.; Park, J. Y.; Lee, E. K.; Hur, N. H. J. Magn. Magn. Mater. 2005, 285, 164.


  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    8. [8]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    11. [11]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    12. [12]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    13. [13]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    14. [14]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(1318)
  • Abstract views(2008)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return