Citation:
SU Shu, HUANG Rong, ZHAO Liu-Bin, WU De-Yin, TIAN Zhong-Qun. Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces[J]. Acta Physico-Chimica Sinica,
;2011, 27(04): 781-792.
doi:
10.3866/PKU.WHXB20110418
-
Density functional theory calculations at the B3LYP/6-311+G**/LANL2DZ(metal) level were used to predict the infrared (IR) and Raman spectra for pyridine and α-pyridyl upon interaction with platinum (Pt), palladium (Pd), rhodium (Rh), and nickel (Ni) clusters. After carefully comparing the simulated IR and Raman spectra with the corresponding experimental spectra from literature, the characteristic frequencies for the metal surface adsorbed pyridine and α-pyridyl were determined. Our results show that on these metal surfaces α-pyridyl has a far lower Raman activity compared with pyridine, but their characteristic frequencies have comparable IR intensities. This is the reason why different adsorption configurations are proposed for the IR and the surface-enhanced Raman spectra (SERS). Our results indicate that IR spectroscopy is an effective tool to detect α-pyridyl adsorbed on metal surface.
-
-
-
[1]
(1) Li, Q. X.; Xue, X. K.; Xu, Q. J.; Cai, W. B. Applied Spectroscopy 2007, 61, 1328.
-
[2]
(2) Bridge, M. E.; Connolly, M.; Lloyd, D. R.; Somers, J.; Jakob, P.; Menzel, D. Spectrochim. Acta A 1987, 43, 1473.
-
[3]
(3) Haq, S.; King, D. A. J. Phys. Chem. 1996, 100, 16957.
-
[4]
(4) Huo, S. J.; Xue, X. K.; Yan, Y. G.; Li, Q. X.; Ma, M.; Cai, W. B.; Xu, Q. J.; Osawa, M. J. Phys. Chem. B 2006, 110, 4162.
-
[5]
(5) Andersson, M. P.; Uvdal, P. J. Phys. Chem. B 2001, 105, 9458.
-
[6]
(6) Morrow, B. A.; Cody, I. A.; Moran, L. E.; Palepu, R. J. Catal. 1976, 44, 467.
-
[7]
(7) DiNardo, N. J.; Avouris, P.; Demuth, J. E. J. Chem. Phys. 1984, 81, 2169.
-
[8]
(8) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1986, 90, 5900.
-
[9]
(9) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1987, 91, 389.
-
[10]
(10) Mate, C. M.; Somorjai, G. A.; Tom, H. W. K.; Zhu, X. D.; Shen, Y. R. J. Chem. Phys. 1988, 88, 441.
-
[11]
(11) Gao, J. S.; Tian, Z. Q. Spectrochim. Acta A 1997, 53, 1595.
-
[12]
(12) Cai, W. B.; She, C. X.; Ren, B.; Yao, J. L.; Tian, Z. W.; Tian, Z. Q. J. Chem. Soc. Faraday Trans. 1998, 94, 3127.
-
[13]
(13) Huang, Q. J.; Li, X. Q.; Yao, J. L.; Ren, B.; Cai, W. B.; Gao, J. S.; Mao, B. W.; Tian, Z. Q. Surf. Sci. 1999, 427-428, 162.
-
[14]
(14) Liu, Z.; Yang, Z. L.; Cui, L.; Ren, B.; Tian, Z. Q. J. Phys. Chem. C 2007, 111, 1770.
-
[15]
(15) Inoue, Y.; Kishi, K.; Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 1983, 31, 109.
-
[16]
(16) Wexler, R. M.; Tsai, M. C.; Friend, C. M.; Muetterties, E. L. J. Am. Chem. Soc. 1982, 104, 2034.
-
[17]
(17) Schoofs, G. R.; Benziger, J. B. J. Phys. Chem. 1988, 92, 741.
-
[18]
(18) Johnson, A. L.; Muetterties, E. L.; Stohr, J.; Sette, F. J. Phys. Chem. 1985, 89, 4071.
-
[19]
(19) Zuo, C.; Ja dzinski, P. W. J. Phys. Chem. B 2005, 109, 1788.
-
[20]
(20) Jones, T. E.; Zuo, C.; Ja dzinski, P. W.; Eberhart, M. E. J. Phys. Chem. C 2007, 111, 5493.
-
[21]
(21) Andrade, G. F. S.; Temperini, M. L. A. J. Raman Spectrosc. 2009, 40, 1989.
-
[22]
(22) Wu, D. Y.; Ren, B.; Xu, X.; Liu, G. K.; Yang, Z. L.; Tian, Z. Q. J. Chem. Phys. 2003, 119, 1701.
-
[23]
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[24]
(24) Wu, D. Y.; Ren, B.; Jiang, Y. X.; Xu, X.; Tian, Z. Q. J. Phys. Chem. A 2002, 106, 9042.
-
[25]
(25) Wu, D. Y.; Hayashi, M.; Shiu, Y. J.; Liang, K. K.; Chang, C. H.; Yeh, Y. L.; Lin, S. H. J. Phys. Chem. A 2003, 107, 9658.
-
[26]
(26) Wu, D. Y.; Cao, Z. J.; Ren, B.; Xu, X.; Tian, Z. Q. Chinese Journal of Light Scattering 2002, 13, 199.
-
[27]
[吴德印, 曹志霁, 任 斌, 徐 昕, 田中群. 光散射学报, 2002, 13, 199.]
-
[28]
(27) Wu, D. Y.; Hayashi, M.; Lin, S. H.; Tian, Z. Q. Spectrochim. Acta A 2004, 60, 137.
-
[29]
(28) Wu, D. Y.; Liu, X. M.; Xu, Y. C.; Duan, S.; Ren, B.; Tian, Z. Q. Chinese Journal of Light Scattering 2006, 18, 323.
-
[30]
[吴德印, 刘秀敏, 徐咏春, 段 赛, 任 斌, 田中群. 光散射学报, 2006, 18, 323.]
-
[31]
(29) Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195.
-
[32]
(30) Wilson, E. B. Phys. Rev. 1934, 45, 706.
-
[33]
(31) Kline, J. C. H.; Turkevich, J. J. Chem. Phys. 1944, 12, 300.
-
[34]
(32) Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679.
-
[35]
(33) Lauhon, L. J.; Ho, W. J. Phys. Chem. A 2000, 104, 2463.
-
[1]
-
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[3]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[4]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[5]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[6]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[7]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[8]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[9]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[10]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[11]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[12]
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
-
[13]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[14]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[15]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[16]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[17]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[18]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[19]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[20]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[1]
Metrics
- PDF Downloads(1242)
- Abstract views(2790)
- HTML views(15)