Citation: SU Shu, HUANG Rong, ZHAO Liu-Bin, WU De-Yin, TIAN Zhong-Qun. Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 781-792. doi: 10.3866/PKU.WHXB20110418 shu

Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces

  • Received Date: 29 October 2010
    Available Online: 8 March 2011

    Fund Project: 国家自然科学基金(20973143, 91027009) (20973143, 91027009)国家重点基础研究发展规划(973) (2007CB815303, 2009CB930703) (973) (2007CB815303, 2009CB930703)厦门大学(2010121020) (2010121020)国家科学人才培养基金(J1030415)资助项目 (J1030415)

  • Density functional theory calculations at the B3LYP/6-311+G**/LANL2DZ(metal) level were used to predict the infrared (IR) and Raman spectra for pyridine and α-pyridyl upon interaction with platinum (Pt), palladium (Pd), rhodium (Rh), and nickel (Ni) clusters. After carefully comparing the simulated IR and Raman spectra with the corresponding experimental spectra from literature, the characteristic frequencies for the metal surface adsorbed pyridine and α-pyridyl were determined. Our results show that on these metal surfaces α-pyridyl has a far lower Raman activity compared with pyridine, but their characteristic frequencies have comparable IR intensities. This is the reason why different adsorption configurations are proposed for the IR and the surface-enhanced Raman spectra (SERS). Our results indicate that IR spectroscopy is an effective tool to detect α-pyridyl adsorbed on metal surface.

  • 加载中
    1. [1]

      (1) Li, Q. X.; Xue, X. K.; Xu, Q. J.; Cai, W. B. Applied Spectroscopy 2007, 61, 1328.

    2. [2]

      (2) Bridge, M. E.; Connolly, M.; Lloyd, D. R.; Somers, J.; Jakob, P.; Menzel, D. Spectrochim. Acta A 1987, 43, 1473.

    3. [3]

      (3) Haq, S.; King, D. A. J. Phys. Chem. 1996, 100, 16957.

    4. [4]

      (4) Huo, S. J.; Xue, X. K.; Yan, Y. G.; Li, Q. X.; Ma, M.; Cai, W. B.; Xu, Q. J.; Osawa, M. J. Phys. Chem. B 2006, 110, 4162.

    5. [5]

      (5) Andersson, M. P.; Uvdal, P. J. Phys. Chem. B 2001, 105, 9458.

    6. [6]

      (6) Morrow, B. A.; Cody, I. A.; Moran, L. E.; Palepu, R. J. Catal. 1976, 44, 467.

    7. [7]

      (7) DiNardo, N. J.; Avouris, P.; Demuth, J. E. J. Chem. Phys. 1984, 81, 2169.

    8. [8]

      (8) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1986, 90, 5900.

    9. [9]

      (9) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1987, 91, 389.

    10. [10]

      (10) Mate, C. M.; Somorjai, G. A.; Tom, H. W. K.; Zhu, X. D.; Shen, Y. R. J. Chem. Phys. 1988, 88, 441.

    11. [11]

      (11) Gao, J. S.; Tian, Z. Q. Spectrochim. Acta A 1997, 53, 1595.

    12. [12]

      (12) Cai, W. B.; She, C. X.; Ren, B.; Yao, J. L.; Tian, Z. W.; Tian, Z. Q. J. Chem. Soc. Faraday Trans. 1998, 94, 3127.

    13. [13]

      (13) Huang, Q. J.; Li, X. Q.; Yao, J. L.; Ren, B.; Cai, W. B.; Gao, J. S.; Mao, B. W.; Tian, Z. Q. Surf. Sci. 1999, 427-428, 162.

    14. [14]

      (14) Liu, Z.; Yang, Z. L.; Cui, L.; Ren, B.; Tian, Z. Q. J. Phys. Chem. C 2007, 111, 1770.

    15. [15]

      (15) Inoue, Y.; Kishi, K.; Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 1983, 31, 109.

    16. [16]

      (16) Wexler, R. M.; Tsai, M. C.; Friend, C. M.; Muetterties, E. L. J. Am. Chem. Soc. 1982, 104, 2034.

    17. [17]

      (17) Schoofs, G. R.; Benziger, J. B. J. Phys. Chem. 1988, 92, 741.

    18. [18]

      (18) Johnson, A. L.; Muetterties, E. L.; Stohr, J.; Sette, F. J. Phys. Chem. 1985, 89, 4071.

    19. [19]

      (19) Zuo, C.; Ja dzinski, P. W. J. Phys. Chem. B 2005, 109, 1788.

    20. [20]

      (20) Jones, T. E.; Zuo, C.; Ja dzinski, P. W.; Eberhart, M. E. J. Phys. Chem. C 2007, 111, 5493.

    21. [21]

      (21) Andrade, G. F. S.; Temperini, M. L. A. J. Raman Spectrosc. 2009, 40, 1989.

    22. [22]

      (22) Wu, D. Y.; Ren, B.; Xu, X.; Liu, G. K.; Yang, Z. L.; Tian, Z. Q. J. Chem. Phys. 2003, 119, 1701.

    23. [23]

      (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    24. [24]

      (24) Wu, D. Y.; Ren, B.; Jiang, Y. X.; Xu, X.; Tian, Z. Q. J. Phys. Chem. A 2002, 106, 9042.

    25. [25]

      (25) Wu, D. Y.; Hayashi, M.; Shiu, Y. J.; Liang, K. K.; Chang, C. H.; Yeh, Y. L.; Lin, S. H. J. Phys. Chem. A 2003, 107, 9658.

    26. [26]

      (26) Wu, D. Y.; Cao, Z. J.; Ren, B.; Xu, X.; Tian, Z. Q. Chinese Journal of Light Scattering 2002, 13, 199.

    27. [27]

      [吴德印, 曹志霁, 任 斌, 徐 昕, 田中群. 光散射学报, 2002, 13, 199.]

    28. [28]

      (27) Wu, D. Y.; Hayashi, M.; Lin, S. H.; Tian, Z. Q. Spectrochim. Acta A 2004, 60, 137.

    29. [29]

      (28) Wu, D. Y.; Liu, X. M.; Xu, Y. C.; Duan, S.; Ren, B.; Tian, Z. Q. Chinese Journal of Light Scattering 2006, 18, 323.

    30. [30]

      [吴德印, 刘秀敏, 徐咏春, 段 赛, 任 斌, 田中群. 光散射学报, 2006, 18, 323.]

    31. [31]

      (29) Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195.

    32. [32]

      (30) Wilson, E. B. Phys. Rev. 1934, 45, 706.

    33. [33]

      (31) Kline, J. C. H.; Turkevich, J. J. Chem. Phys. 1944, 12, 300.

    34. [34]

      (32) Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679.

    35. [35]

      (33) Lauhon, L. J.; Ho, W. J. Phys. Chem. A 2000, 104, 2463.


  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    13. [13]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(1242)
  • Abstract views(2736)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return