Citation: SU Shu, HUANG Rong, ZHAO Liu-Bin, WU De-Yin, TIAN Zhong-Qun. Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 781-792. doi: 10.3866/PKU.WHXB20110418 shu

Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces

  • Received Date: 29 October 2010
    Available Online: 8 March 2011

    Fund Project: 国家自然科学基金(20973143, 91027009) (20973143, 91027009)国家重点基础研究发展规划(973) (2007CB815303, 2009CB930703) (973) (2007CB815303, 2009CB930703)厦门大学(2010121020) (2010121020)国家科学人才培养基金(J1030415)资助项目 (J1030415)

  • Density functional theory calculations at the B3LYP/6-311+G**/LANL2DZ(metal) level were used to predict the infrared (IR) and Raman spectra for pyridine and α-pyridyl upon interaction with platinum (Pt), palladium (Pd), rhodium (Rh), and nickel (Ni) clusters. After carefully comparing the simulated IR and Raman spectra with the corresponding experimental spectra from literature, the characteristic frequencies for the metal surface adsorbed pyridine and α-pyridyl were determined. Our results show that on these metal surfaces α-pyridyl has a far lower Raman activity compared with pyridine, but their characteristic frequencies have comparable IR intensities. This is the reason why different adsorption configurations are proposed for the IR and the surface-enhanced Raman spectra (SERS). Our results indicate that IR spectroscopy is an effective tool to detect α-pyridyl adsorbed on metal surface.

  • 加载中
    1. [1]

      (1) Li, Q. X.; Xue, X. K.; Xu, Q. J.; Cai, W. B. Applied Spectroscopy 2007, 61, 1328.

    2. [2]

      (2) Bridge, M. E.; Connolly, M.; Lloyd, D. R.; Somers, J.; Jakob, P.; Menzel, D. Spectrochim. Acta A 1987, 43, 1473.

    3. [3]

      (3) Haq, S.; King, D. A. J. Phys. Chem. 1996, 100, 16957.

    4. [4]

      (4) Huo, S. J.; Xue, X. K.; Yan, Y. G.; Li, Q. X.; Ma, M.; Cai, W. B.; Xu, Q. J.; Osawa, M. J. Phys. Chem. B 2006, 110, 4162.

    5. [5]

      (5) Andersson, M. P.; Uvdal, P. J. Phys. Chem. B 2001, 105, 9458.

    6. [6]

      (6) Morrow, B. A.; Cody, I. A.; Moran, L. E.; Palepu, R. J. Catal. 1976, 44, 467.

    7. [7]

      (7) DiNardo, N. J.; Avouris, P.; Demuth, J. E. J. Chem. Phys. 1984, 81, 2169.

    8. [8]

      (8) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1986, 90, 5900.

    9. [9]

      (9) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1987, 91, 389.

    10. [10]

      (10) Mate, C. M.; Somorjai, G. A.; Tom, H. W. K.; Zhu, X. D.; Shen, Y. R. J. Chem. Phys. 1988, 88, 441.

    11. [11]

      (11) Gao, J. S.; Tian, Z. Q. Spectrochim. Acta A 1997, 53, 1595.

    12. [12]

      (12) Cai, W. B.; She, C. X.; Ren, B.; Yao, J. L.; Tian, Z. W.; Tian, Z. Q. J. Chem. Soc. Faraday Trans. 1998, 94, 3127.

    13. [13]

      (13) Huang, Q. J.; Li, X. Q.; Yao, J. L.; Ren, B.; Cai, W. B.; Gao, J. S.; Mao, B. W.; Tian, Z. Q. Surf. Sci. 1999, 427-428, 162.

    14. [14]

      (14) Liu, Z.; Yang, Z. L.; Cui, L.; Ren, B.; Tian, Z. Q. J. Phys. Chem. C 2007, 111, 1770.

    15. [15]

      (15) Inoue, Y.; Kishi, K.; Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 1983, 31, 109.

    16. [16]

      (16) Wexler, R. M.; Tsai, M. C.; Friend, C. M.; Muetterties, E. L. J. Am. Chem. Soc. 1982, 104, 2034.

    17. [17]

      (17) Schoofs, G. R.; Benziger, J. B. J. Phys. Chem. 1988, 92, 741.

    18. [18]

      (18) Johnson, A. L.; Muetterties, E. L.; Stohr, J.; Sette, F. J. Phys. Chem. 1985, 89, 4071.

    19. [19]

      (19) Zuo, C.; Ja dzinski, P. W. J. Phys. Chem. B 2005, 109, 1788.

    20. [20]

      (20) Jones, T. E.; Zuo, C.; Ja dzinski, P. W.; Eberhart, M. E. J. Phys. Chem. C 2007, 111, 5493.

    21. [21]

      (21) Andrade, G. F. S.; Temperini, M. L. A. J. Raman Spectrosc. 2009, 40, 1989.

    22. [22]

      (22) Wu, D. Y.; Ren, B.; Xu, X.; Liu, G. K.; Yang, Z. L.; Tian, Z. Q. J. Chem. Phys. 2003, 119, 1701.

    23. [23]

      (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    24. [24]

      (24) Wu, D. Y.; Ren, B.; Jiang, Y. X.; Xu, X.; Tian, Z. Q. J. Phys. Chem. A 2002, 106, 9042.

    25. [25]

      (25) Wu, D. Y.; Hayashi, M.; Shiu, Y. J.; Liang, K. K.; Chang, C. H.; Yeh, Y. L.; Lin, S. H. J. Phys. Chem. A 2003, 107, 9658.

    26. [26]

      (26) Wu, D. Y.; Cao, Z. J.; Ren, B.; Xu, X.; Tian, Z. Q. Chinese Journal of Light Scattering 2002, 13, 199.

    27. [27]

      [吴德印, 曹志霁, 任 斌, 徐 昕, 田中群. 光散射学报, 2002, 13, 199.]

    28. [28]

      (27) Wu, D. Y.; Hayashi, M.; Lin, S. H.; Tian, Z. Q. Spectrochim. Acta A 2004, 60, 137.

    29. [29]

      (28) Wu, D. Y.; Liu, X. M.; Xu, Y. C.; Duan, S.; Ren, B.; Tian, Z. Q. Chinese Journal of Light Scattering 2006, 18, 323.

    30. [30]

      [吴德印, 刘秀敏, 徐咏春, 段 赛, 任 斌, 田中群. 光散射学报, 2006, 18, 323.]

    31. [31]

      (29) Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195.

    32. [32]

      (30) Wilson, E. B. Phys. Rev. 1934, 45, 706.

    33. [33]

      (31) Kline, J. C. H.; Turkevich, J. J. Chem. Phys. 1944, 12, 300.

    34. [34]

      (32) Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679.

    35. [35]

      (33) Lauhon, L. J.; Ho, W. J. Phys. Chem. A 2000, 104, 2463.


  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    12. [12]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    13. [13]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    18. [18]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    19. [19]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(1242)
  • Abstract views(2790)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return