Citation: TANG Yan, ZHONG Ben-He, GUO Xiao-Dong, LIU Heng, ZHONG Yan-Jun, NIE Xiang, TANG Hong. Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 869-874. doi: 10.3866/PKU.WHXB20110416 shu

Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method

  • Received Date: 3 January 2011
    Available Online: 7 March 2011

    Fund Project: 国家科技支撑计划(2007BAQ01055)资助项目 (2007BAQ01055)

  • A Li3V2(PO4)3/C composite cathode material was obtained by a sol-gel method using deionized water and organic solvents as mixed solvents. Ethanol, ethylene glycol, and 1,2-propylene glycol were used as the organic solvents and polyacrylic acid (PAA) was used as the chelating agent and carbon source. The structure, morphology, and electrochemical performance of the synthesized materials were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, and cyclic voltammetry. XRD analysis showed that all the materials were well crystallized and that the addition of organic solvents did not affect the crystal structure of Li3V2(PO4)3. The results of galvanostatic cycling showed that the electrochemical performance of the products was improved by the addition of organic solvents. The material synthesized using 1,2-propylene glycol had the best electrochemical performance. It exhibited an initial discharge capacity of 132.89 mAh·g-1 at 0.1C (1C=150 mA·g-1) in the voltage range of 3.0-4.5 V. The initial discharge capacity was as high as 125.42 mAh·g-1 upon discharging at 10C, and it had a capacity retention of 95.79% after 700 cycles. These results indicate a od rate and cycling performance in the voltage range of 3.0-4.5 V; while in the voltage range of 3.0-4.8 V, it exhibits a bad rate performance. SEM images indicated that the sample prepared using the mixed solvents had a flake-like and needle-like shape, which facilitates the interface ion-transfer process and thus improves the overall electrochemical properties.

  • 加载中
    1. [1]

      (1) Guo, X. D.; Zhong, B. H.; Liu, H.; Wu, D. Q.; Tang, Y.; Tang, H. J. Electrochem. Soc. 2009, 156, A787.

    2. [2]

      (2) Tang, Y.; Guo, X. D.; Zhong, B. H.; Liu, H. Inorganic Chemicals Industry 2010, 42, 12.

    3. [3]

      [唐 艳, 郭孝东, 钟本和, 刘 恒. 无机盐工业, 2010, 42, 12.]

    4. [4]

      (3) Wu, D. Q.; Zhong, B. H.; Xu, R.; Guo, X. D.; Liu, H.; Song, Y.; Tang, Y. New Chemical Materials 2010, 38, 37.

    5. [5]

      [吴德桥, 钟本和, 徐 瑞, 郭孝东, 刘 恒, 宋 杨, 唐 艳. 化工新型材料, 2010, 38, 37.]

    6. [6]

      (4) Li, Y. Z.; Zhou, Z.; Gao, X. P.; Yan, J. Electrochimica Acta 2007, 52, 4922.

    7. [7]

      (5) Jiang, T.; Wei, Y. J.; Pan, W. C.; Li, Z.; Ming, X.; Chen, G.; Wang, C. Z. J. Alloy. Compd. 2009, 488, L26.

    8. [8]

      (6) Li, L. J.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wu, L.; Hao, Y.; Zheng, J. C. J. Alloy. Compd. 2010, 497, 176.

    9. [9]

      (7) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liu, H.; Wu, D. Q.; Yang, H. L. J. Chem. Eng. Chin. Univ. 2009, 23, 701.

    10. [10]

      [郭孝东, 钟本和, 唐 艳, 刘 恒, 吴德桥, 杨海兰. 高校化学工程学报, 2009, 23, 701.]

    11. [11]

      (8) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liao, W. H.; Wu, D. Q. Chemical Research and Application 2008, 20, 625.

    12. [12]

      [郭孝东, 钟本和, 唐 艳, 廖文华, 吴德桥. 化学研究与应用, 2008, 20, 625.]

    13. [13]

      (9) Hou, C. P.; Yue, M. Acta Phys. -Chim. Sin. 2007, 23, 1954.

    14. [14]

      [侯春平, 岳 敏. 物理化学学报, 2007, 23, 1954.]

    15. [15]

      (10) Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Wu, L.; Li, L. J.; Guo, H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916.

    16. [16]

      [郑俊超, 李新海, 王志兴, 李金辉, 伍 凌, 李灵均, 郭华军. 物理化学学报, 2009, 25, 1916.]

    17. [17]

      (11) Chen, Q. Q.; Wang, J. M.; Tang, Z.; He, W. C.; Shao, H. B.; Zhang, J. Q. Electrochimica Acta 2007, 52, 5251.

    18. [18]

      (12) Tan, L.; Luo, Z. M.; Liu, H. W.; Yu, Y. J. Alloy. Compd. 2010, 502, 407.

    19. [19]

      (13) Jang, I. C.; Lim, H. H.; Lee, S. B.; Karthikeyan, K.; Aravindan, V.; Kang, K. S.; Yoon, W. S.; Cho, W. I.; Lee, Y. S. J. Alloy. Compd. 2010, 497, 321.

    20. [20]

      (14) Wang, L.; Zhang, L. C.; Lieberwirth, L.; Xu, H. W.; Chen, C. H. Electrochem. Commun. 2010, 12, 52.

    21. [21]

      (15) Wang, J. W.; Zhang, X. F.; Liu, J.; Yang, G. L.; Ge, Y. C.; Yu, Z. J.; Wang, R. S.; Pan, X. M. Electrochimica Acta 2010, 55, 6879.

    22. [22]

      (16) Wang, L. J.; Zhou, X. C.; Guo, Y. L. J. Power Sources 2010, 195, 2844.

    23. [23]

      (17) Fu, P.; Zhao, Y. M.; Dong, Y. Z.; Hou, X. M. J. Phys. Chem. Solid 2010, 71, 394.

    24. [24]

      (18) Zhou, X. C.; Liu, Y. M.; Guo, Y. L. Electrochimica Acta 2009, 54, 2253.

    25. [25]

      (19) Jiang, T.; Pan, W. C.; Wang, J.; Bie, X. F.; Du, F.; Wei, Y. J. Electrochimica Acta 2010, 55, 3864.

    26. [26]

      (20) Huang, J. S.; Yang, L.; Liu, K. Y.; Tang, Y. F. J. Power Sources 2010, 195, 5013.

    27. [27]

      (21) Dai, C. S.; Wang, F. P.; Liu, J. T.; Wang, D. L; Hu, X. G. Chin. J. Inorg. Chem. 2008, 24, 381.

    28. [28]

      [戴长松, 王福平, 刘静涛, 王殿龙, 胡信国. 无机化学学报, 2008, 24, 381.]

    29. [29]

      (22) Yang, G.; Liu, H. D.; Ji, H. M.; Chen, Z. Z.; Jiang, X. F. J. Power Sources 2010, 195, 5374.

    30. [30]

      (23) Yang, G.; Liu, H. D.; Ji, H. M.; Chen, Z. Z.; Jiang, X. F. Electrochimica Acta 2010, 55, 2951.

    31. [31]

      (24) Rui, X. H.; Li, C.; Chen, C. H. Electrochimica Acta 2009, 54, 3374.

    32. [32]

      (25) Saidi, M. Y.; Barker, J.; Huang, H.; Swoyer, J. L.; Adamson, G. J. Power Sources 2003, 119-121, 266.

    33. [33]

      (26) Fu, P.; Zhao, Y.; Dong, Y.; An, X.; Shen, G. Electrochimica Acta 2006, 52, 1003.


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    17. [17]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    18. [18]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(1367)
  • Abstract views(3176)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return