Citation: Lü Rong-Guan, YANG Jun, WANG Jiu-Lin, NULI Yan-Na. Electrodeposition and Electrochemical Property of Porous Li-Si Film Anodes for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 759-763. doi: 10.3866/PKU.WHXB20110415 shu

Electrodeposition and Electrochemical Property of Porous Li-Si Film Anodes for Lithium-Ion Batteries

  • Received Date: 13 December 2010
    Available Online: 7 March 2011

    Fund Project: 国家自然科学基金(20873085)资助项目 (20873085)

  • Porous Li-Si thin films (LSFs) were prepared by a multi-step constant current electrodeposition onto Cu foil. The structure and morphology of the electrodeposited films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). As anodes for Li-ion batteries, Li-Si films give high cycling stability, adjustable Li-storage capacity and initial coulombic efficiency under different electrodeposition conditions. For instance, LSF-3 was electrodeposited in an electrolyte of 0.5 mol·L-1 SiCl4+0.7 mol·L-1 LiClO4+propylene caronate (PC) under certain conditions (i1=-3.82 mA·cm-2, t1=600 s; i2=-1.27 mA·cm-2, t2=7200 s). LSF-3 showed the first coulombic efficiency of 97.1% at a current density of 12.7 μA·cm-2. After the two initial pre-cycles, it delivered gravimetric and geometric charge capacities of 1410 mAh·g-1 and 240.6 μAh·cm-2 at 25.5 μA·cm-2. After 50 cycles, its charge capacity was 179.0 μAh·cm-2 (1049 mAh·g-1), retaining 74.4% of its initial capacity. The porous structure in LSFs can accommodate a part of the volume change during Li insertion/extraction and this favors the structural stability.

  • 加载中
    1. [1]

      (1) Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Adv. Mater. 1998, 10, 725.

    2. [2]

      (2) Su, L. W.; Zhou, Z.; Ren, M. M. Chem. Commun. 2010, 46, 2590.

    3. [3]

      (3) Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater. 2010, 9, 353.

    4. [4]

      (4) Zhang, S. C.; Du, Z. J.; Lin, R. X.; Jiang, T.; Liu, G. R.; Wu, X. M.; Weng, D. S. Adv. Mater. 2010, 22, 5378.

    5. [5]

      (5) Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Adv. Mater. 2010, 22, 2247.

    6. [6]

      (6) Cho, J. J. Mater. Chem. 2010, 20, 4009.

    7. [7]

      (7) Song, Y. J.; Zhang, H. F.; Fu, P. P.; Yang, H. B.; Zhou, Z. X.; Wu, M. T.; Huang, L. H. Chem. J. Chin. Univ. 2008, 29, 573.

    8. [8]

      [宋英杰, 张宏芳, 伏萍萍, 杨化滨, 周作祥, 吴孟涛, 黄来和. 高等学校化学学报, 2008, 29, 573.]

    9. [9]

      (8) Takamura, T.; Ohara, S.; Uehara, M.; Suzuki, J.; Sekine, K. J. Power Sources 2004, 129, 96.

    10. [10]

      (9) Shima, M.; Yagi, H.; Tarui, H.; Ikeda, H.; Fujimoto, M.; Fujitani, S.; Domoto, Y. Method for Preparing Electrode Material for Lithium Battery. US Patent 6887511 B1, 2005-05-03.

    11. [11]

      (10) Ahn, H. J.; Kim, Y. S.; Park, K. W.; Seong, T. Y. Chem. Commun. 2005, No.1, 43.

    12. [12]

      (11) Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. J. Electrochem. Soc. 2006, 153, A472.

    13. [13]

      (12) Fleischauer, M. D.; Obrovac, M. N.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A851.

    14. [14]

      (13) Song, S. W.; Striebel, K. A.; Reade, R. P.; Roberts, G. A.; Cairns, E. J. J. Electrochem. Soc. 2003, 150, A121.

    15. [15]

      (14) Yang, J. Y.; Lu, S. G.; Kan, S. R.; Zhang, X. J.; Du, J. Chem. Commun. 2009, No. 22, 3273.

    16. [16]

      (15) Yang, J. Y.; Lu, S. G.; Ding, H. Y.; Zhang, X. J.; Kan, S. R. Chin. J. Inorg. Chem. 2010, 26, 1837.

    17. [17]

      [杨娟玉, 卢世刚, 丁海洋, 张向军, 阚素荣. 无机化学学报, 2010, 26, 1837.]

    18. [18]

      (16) Juzeliunas, E.; Cox, A.; Fray, D. J. Electrochem. Commun. 2010, 12, 1270.

    19. [19]

      (17) Nishimura, Y.; Fukunaka, Y. Electrochim. Acta 2007, 53, 111.

    20. [20]

      (18) Nicholson, J. P. J. Electrochem. Soc. 2005, 152, C795.

    21. [21]

      (19) Munisamy, T.; Bard, A. J. Electrochim. Acta 2010, 55, 3797.

    22. [22]

      (20) Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, C. S.; Ghodssi, R.; Culver, J. N. Adv. Funct. Mater. 2011, 21, 380.

    23. [23]

      (21) Schmuck, M.; Balducci, A.; Rupp, B.; Kern, W.; Passerini, S.; Winter, M. J. Solid State Electrochem. 2010, 14, 2203.

    24. [24]

      (22) El-Abedin, S. Z.; Borissenko, N.; Endres, F. Electrochem. Commun. 2004, 6, 510.

    25. [25]

      (23) Al-Salman, R.; Mallet, J.; Molinari, M.; Fricoteaux, P.; Martineau, F.; Troyon, M.; El-Abedin, S. Z.; Endres, F. Phys. Chem. Chem. Phys. 2008, 10, 6233.

    26. [26]

      (24) Mallet, J.; Molinari, M.; Martineau, F.; Delavoie, F.; Fricoteaux, P.; Troyon, M. Nano Lett. 2008, 8, 3468.

    27. [27]

      (25) Ota, M.; Izuo, S.; Nishikawa, K.; Fukunaka, Y.; Kusaka, E.; Ishii, R.; Selman, J. R. J. Electroanal. Chem. 2003, 559, 175.

    28. [28]

      (26) Boen, R.; Bouteillon, J. J. Appl. Electrochem. 1983, 13, 277.

    29. [29]

      (27) Seong, I. W.; Yoon, W. Y. J. Power Sources 2010, 195, 6143.


  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(1556)
  • Abstract views(3054)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return