Citation:
SONG Lei, YU Feng, WU Li-Xia, ZHOU Xiao-Guo, LIU Shi-Lin. Anionic Production Pathways Involved in the Reaction between OH- and CH2ClF[J]. Acta Physico-Chimica Sinica,
;2011, 27(04): 801-807.
doi:
10.3866/PKU.WHXB20110409
-
The anionic production pathways involved in the reaction between hydroxide anion (OH-) and chlorofluoromethane (CH2ClF) were theoretically investigated. The optimized geometries of all the important species on the reaction potential energy surface were obtained at the B3LYP/6-31+G(d,p) and B3LYP/6-311++G(2d,p) levels. Consequently, harmonic vibrational frequencies and zero point energies (ZPEs) were calculated. Based on the relative energies of all the species that were calculated at the CCSD(T)/6-311+G(3df,3dp) level, the anionic production channels for the H+-abstraction and the bimolecular nucleophilic substitution (SN2) reaction processes are elaborated upon. According to the calculated barrier heights for the production pathways, the H+-abstraction channel is dominant, which agrees very well with previous experimental conclusions. In addition, non-typical anionic products are suggested to form during the SN2 reaction processes where the serious dynamic effect probably causes the SN2 reaction process to produce F-.
-
-
-
[1]
(1) Deckers, J.; van Tiggelen, A. Combust. Flame 1957, 1, 281.
-
[2]
(2) Lee, J.; Grabowski, J. J. Chem. Rev. 1992, 92, 1611.
-
[3]
(3) Fialkov, A. B. Prog. Energy Combust. Sci. 1997, 23, 399.
-
[4]
(4) Grabowski, J. J.; Melly, S. J. Int. J. Mass Spectrom. 1987, 81, 147.
-
[5]
(5) McFarland, M.; Albritton, D. L.; Fehsenfeld, F. C.; Ferguson, E. E.; Schmeltekopf, A. L. J. Chem. Phys. 1973, 59, 6610.
-
[6]
(6) Beauchamp, J. L. Annu. Rev. Phys. Chem. 1971, 22, 527.
-
[7]
(7) Futrell, J. H.; Miller, C. D. Rev. Sci. Instrum. 1966, 37, 1521.
-
[8]
(8) Adams, N. G.; Smith, D. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 349.
-
[9]
(9) Bilotta, R. M.; Preuninger, F. N.; Farrar, J. M. J. Chem. Phys. 1980, 73, 1637.
-
[10]
(10) Mayhew, C. A.; Peverall, R.; Timperley, C. M.; Watts, P. Int. J. Mass Spectrom. 2004, 233, 155.
-
[11]
(11) Solomon, S. Rev. Geophys. 1999, 37, 275.
-
[12]
(12) Rowland, F. S. Ambio 1990, 19, 281.
-
[13]
(13) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
-
[14]
(14) Bhatnagar, A.; Carr, R. W. Chem. Phys. Lett. 1996, 258, 651.
-
[15]
(15) Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J. L.; Guarnieri, A. J. Mol. Spectrosc. 1995, 174, 397.
-
[16]
(16) http://en.wikipedia.org/wiki/Montreal_Protocol (accessed May 4, 2010).
-
[17]
(17) Howle, C. R.; Mayhew, C. A.; Tuckett, R. P. J. Phys. Chem. A 2005, 109, 3626.
-
[18]
(18) Peverall, R.; Kennedy, R. A.; Mayhew, C. A.; Watts, P. Int. J. Mass Spectrom. 1997, 171, 51.
-
[19]
(19) Chiorboli, C.; Piazza, R.; Tosato, M. L.; Carassiti, V. Coord. Chem. Rev. 1993, 125, 241.
-
[20]
(20) Bottoni, A.; Poggi, G.; Emmi, S. S. J. Mol. Struct. -Theochem 1993, 279, 299.
-
[21]
(21) Tanner, S. D.; Mackay, G. I.; Bohme, D. K. Can. J. Chem. 1981, 59, 1615.
-
[22]
(22) Yang, X.; Zhang, X.; Castleman, A. W. J. Phys. Chem. 1991, 95, 8520.
-
[23]
(23) Yang, X.; Castleman, A. W. J. Am. Chem. Soc. 1991, 113, 6766.
-
[24]
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02, D.01, E.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[25]
(25) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
[26]
(26) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
-
[27]
(27) Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683.
-
[28]
(28) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
-
[29]
(29) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
-
[30]
(30) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
-
[31]
(31) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
-
[32]
(32) Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J. Chem. Phys. 1985, 83, 4041.
-
[33]
(33) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1988, 89, 7382.
-
[34]
(34) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.
-
[35]
(35) Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 1999, 110, 7650.
-
[36]
(36) Yu, F.; Zhao, Y. G.; Wang, Y.; Zhou, X. G.; Liu, S. L. Acta Chim. Sin. 2007, 65, 899.
-
[37]
[于 锋, 赵英国, 王 勇, 周晓国, 刘世林. 化学学报, 2007, 65, 899.]
-
[38]
(37) Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chim. Sin. 2008, 66, 2499.
-
[39]
[王新磊, 于 锋, 谢 丹, 刘世林, 周晓国. 化学学报, 2008, 66, 2499.]
-
[40]
(38) Wu, L. X.; Yu, F.; Song, L.; Zhou, X. G.; Liu, S. L. J. Mol. Struct. -Theochem 2010, 958, 82.
-
[41]
(39) Yu, F.; Wu, L. X.; Zhou, X. G.; Liu, S. L. Chin. J. Chem. Phys. 2010, 23, 643.
-
[42]
[于 锋,吴琍霞,周晓国,刘世林. 化学物理学报, 2010, 23, 643.]
-
[43]
(40) Borisov, Y. A.; Arcia, E. E.; Mielke, S. L.; Garrett, B. C.; Dunning, T. H. J. Phys. Chem. A 2001, 105, 7724.
-
[44]
(41) Lee, E. P. F.; Dyke, J. M.; Mayhew, C. A. J. Phys. Chem. A 1998, 102, 8349.
-
[45]
(42) Yu, F.; Wu, L. X.; Song, L.; Zhou, X. G.; Liu, S. L. J. Mol. Struct. -Theochem 2010, 958, 41.
-
[46]
(43) Yu, F.; Wu, L. X.; Liu, S. L.; Zhou, X. G. J. Mol. Struct. -Theochem 2010, 947, 1.
-
[47]
(44) Wu, L. X.; Yu, F.; Liu, J.; Dai, J. H.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2331.
-
[48]
[吴琍霞, 于 锋, 刘 静, 戴静华, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2331.]
-
[49]
(45) Sun, L.; Song, K.; Hase, W. L. Science 2002, 296, 875.
-
[50]
(46) Hase, W. L. Science 1994, 266, 998.
-
[1]
-
-
-
[1]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[4]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[9]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[13]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[16]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[17]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[18]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[19]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[20]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[1]
Metrics
- PDF Downloads(1081)
- Abstract views(2532)
- HTML views(9)