Citation: SONG Lei, YU Feng, WU Li-Xia, ZHOU Xiao-Guo, LIU Shi-Lin. Anionic Production Pathways Involved in the Reaction between OH- and CH2ClF[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 801-807. doi: 10.3866/PKU.WHXB20110409 shu

Anionic Production Pathways Involved in the Reaction between OH- and CH2ClF

  • Received Date: 24 November 2010
    Available Online: 2 March 2011

    Fund Project: 国家自然科学基金(20603033, 10979042) (20603033, 10979042)国家重点基础研究发展规划(973) (2007CB815204)资助项目 (973) (2007CB815204)

  • The anionic production pathways involved in the reaction between hydroxide anion (OH-) and chlorofluoromethane (CH2ClF) were theoretically investigated. The optimized geometries of all the important species on the reaction potential energy surface were obtained at the B3LYP/6-31+G(d,p) and B3LYP/6-311++G(2d,p) levels. Consequently, harmonic vibrational frequencies and zero point energies (ZPEs) were calculated. Based on the relative energies of all the species that were calculated at the CCSD(T)/6-311+G(3df,3dp) level, the anionic production channels for the H+-abstraction and the bimolecular nucleophilic substitution (SN2) reaction processes are elaborated upon. According to the calculated barrier heights for the production pathways, the H+-abstraction channel is dominant, which agrees very well with previous experimental conclusions. In addition, non-typical anionic products are suggested to form during the SN2 reaction processes where the serious dynamic effect probably causes the SN2 reaction process to produce F-.

  • 加载中
    1. [1]

      (1) Deckers, J.; van Tiggelen, A. Combust. Flame 1957, 1, 281.

    2. [2]

      (2) Lee, J.; Grabowski, J. J. Chem. Rev. 1992, 92, 1611.

    3. [3]

      (3) Fialkov, A. B. Prog. Energy Combust. Sci. 1997, 23, 399.

    4. [4]

      (4) Grabowski, J. J.; Melly, S. J. Int. J. Mass Spectrom. 1987, 81, 147.

    5. [5]

      (5) McFarland, M.; Albritton, D. L.; Fehsenfeld, F. C.; Ferguson, E. E.; Schmeltekopf, A. L. J. Chem. Phys. 1973, 59, 6610.

    6. [6]

      (6) Beauchamp, J. L. Annu. Rev. Phys. Chem. 1971, 22, 527.

    7. [7]

      (7) Futrell, J. H.; Miller, C. D. Rev. Sci. Instrum. 1966, 37, 1521.

    8. [8]

      (8) Adams, N. G.; Smith, D. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 349.

    9. [9]

      (9) Bilotta, R. M.; Preuninger, F. N.; Farrar, J. M. J. Chem. Phys. 1980, 73, 1637.

    10. [10]

      (10) Mayhew, C. A.; Peverall, R.; Timperley, C. M.; Watts, P. Int. J. Mass Spectrom. 2004, 233, 155.

    11. [11]

      (11) Solomon, S. Rev. Geophys. 1999, 37, 275.

    12. [12]

      (12) Rowland, F. S. Ambio 1990, 19, 281.

    13. [13]

      (13) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.

    14. [14]

      (14) Bhatnagar, A.; Carr, R. W. Chem. Phys. Lett. 1996, 258, 651.

    15. [15]

      (15) Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J. L.; Guarnieri, A. J. Mol. Spectrosc. 1995, 174, 397.

    16. [16]

      (16) http://en.wikipedia.org/wiki/Montreal_Protocol (accessed May 4, 2010).

    17. [17]

      (17) Howle, C. R.; Mayhew, C. A.; Tuckett, R. P. J. Phys. Chem. A 2005, 109, 3626.

    18. [18]

      (18) Peverall, R.; Kennedy, R. A.; Mayhew, C. A.; Watts, P. Int. J. Mass Spectrom. 1997, 171, 51.

    19. [19]

      (19) Chiorboli, C.; Piazza, R.; Tosato, M. L.; Carassiti, V. Coord. Chem. Rev. 1993, 125, 241.

    20. [20]

      (20) Bottoni, A.; Poggi, G.; Emmi, S. S. J. Mol. Struct. -Theochem 1993, 279, 299.

    21. [21]

      (21) Tanner, S. D.; Mackay, G. I.; Bohme, D. K. Can. J. Chem. 1981, 59, 1615.

    22. [22]

      (22) Yang, X.; Zhang, X.; Castleman, A. W. J. Phys. Chem. 1991, 95, 8520.

    23. [23]

      (23) Yang, X.; Castleman, A. W. J. Am. Chem. Soc. 1991, 113, 6766.

    24. [24]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02, D.01, E.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    25. [25]

      (25) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    26. [26]

      (26) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.

    27. [27]

      (27) Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683.

    28. [28]

      (28) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.

    29. [29]

      (29) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.

    30. [30]

      (30) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.

    31. [31]

      (31) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.

    32. [32]

      (32) Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J. Chem. Phys. 1985, 83, 4041.

    33. [33]

      (33) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1988, 89, 7382.

    34. [34]

      (34) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.

    35. [35]

      (35) Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 1999, 110, 7650.

    36. [36]

      (36) Yu, F.; Zhao, Y. G.; Wang, Y.; Zhou, X. G.; Liu, S. L. Acta Chim. Sin. 2007, 65, 899.

    37. [37]

      [于 锋, 赵英国, 王 勇, 周晓国, 刘世林. 化学学报, 2007, 65, 899.]

    38. [38]

      (37) Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chim. Sin. 2008, 66, 2499.

    39. [39]

      [王新磊, 于 锋, 谢 丹, 刘世林, 周晓国. 化学学报, 2008, 66, 2499.]

    40. [40]

      (38) Wu, L. X.; Yu, F.; Song, L.; Zhou, X. G.; Liu, S. L. J. Mol. Struct. -Theochem 2010, 958, 82.

    41. [41]

      (39) Yu, F.; Wu, L. X.; Zhou, X. G.; Liu, S. L. Chin. J. Chem. Phys. 2010, 23, 643.

    42. [42]

      [于 锋,吴琍霞,周晓国,刘世林. 化学物理学报, 2010, 23, 643.]

    43. [43]

      (40) Borisov, Y. A.; Arcia, E. E.; Mielke, S. L.; Garrett, B. C.; Dunning, T. H. J. Phys. Chem. A 2001, 105, 7724.

    44. [44]

      (41) Lee, E. P. F.; Dyke, J. M.; Mayhew, C. A. J. Phys. Chem. A 1998, 102, 8349.

    45. [45]

      (42) Yu, F.; Wu, L. X.; Song, L.; Zhou, X. G.; Liu, S. L. J. Mol. Struct. -Theochem 2010, 958, 41.

    46. [46]

      (43) Yu, F.; Wu, L. X.; Liu, S. L.; Zhou, X. G. J. Mol. Struct. -Theochem 2010, 947, 1.

    47. [47]

      (44) Wu, L. X.; Yu, F.; Liu, J.; Dai, J. H.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2331.

    48. [48]

      [吴琍霞, 于 锋, 刘 静, 戴静华, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2331.]

    49. [49]

      (45) Sun, L.; Song, K.; Hase, W. L. Science 2002, 296, 875.

    50. [50]

      (46) Hase, W. L. Science 1994, 266, 998.


  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(1081)
  • Abstract views(2487)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return