Citation: LIU Zhen-Hai, SHANG Ya-Zhuo, HUANG Yong-Min, PENG Chang-Jun, LIU Hong-Lai. Disassembly of Polyelectrolyte/Surfactants Complex Induced by Macroions[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1135-1142. doi: 10.3866/PKU.WHXB20110406 shu

Disassembly of Polyelectrolyte/Surfactants Complex Induced by Macroions

  • Received Date: 11 November 2010
    Available Online: 1 March 2011

    Fund Project: 国家自然科学基金(20706013, 20736002) (20706013, 20736002) 长江学者创新团队(IRT0721) (IRT0721)

  • The effects of charge number, diameter, surface charge density as well as concentration of macroions on the structure of a polyelectrolyte/surfactants complex were investigated using coarse- grained molecular dynamics simulation. We found that the macroions that had the same charge as the polyelectrolyte had no obvious effect on the structure of the polyelectrolyte/surfactants complex. However, the macroions with opposite charge to the polyelectrolyte can induce the release of surfactant from the polyelectrolyte and even lead to the complete disassembly of the polyelectrolyte/surfactants complex and the formation of a macroion/polyelectrolyte complex. The induction effect increases with an increase in charge number. For microions with the same charge number, smaller microions were found to cause desorption of the surfactant more easily. However the opposite effect was found for the diameter at a fixed charge density. The concentration of macroions also affects the structure of the complex greatly and the surfactants that are released from the polyelectrolyte increase with the macroion concentration and finally a macroion/polyelectrolyte complex with reversed charges is formed.

  • 加载中
    1. [1]

      (1) ddard, E. D.; Ananthapadmanabhan, K. P. Interactions of Surfactants with Polymers and Proteins; CRC Press: Boca Raton, FL, 1993.

    2. [2]

      (2) Zhou, S. Q.; Chu B. Adv. Mater. 2000, 12, 545.

    3. [3]

      (3) Kwak, J. C. T. Polymer-Surfactant Systems. Marcel Dekker: New York, 1999.

    4. [4]

      (4) Chu, D. Y.; Thomas, J. K. Polym. Prepr. 1986, 27, 329.

    5. [5]

      (5) Morishima, Y.; Mizusaki M.; Yoshida, K.; Dubin. P. L. Colloids and Surfaces A, Physicochem. Eng. Aspects 1999, 147, 149.

    6. [6]

      (6) Kosmella, S.; K?tz, J.; Shirahama, K.; Liu, J. J. Phys. Chem. B 1998, 102, 6459.

    7. [7]

      (7) Wang, C.; Tam, K. C. J. Phys. Chem. B 2004, 108, 8976.

    8. [8]

      (8) Dubin, P. L.; Oeri, R. J. Colloid Interface Sci. 1983, 95, 453.

    9. [9]

      (9) Almgren, M.; Hansson, P.; Mukhtar, E.; Stam, J. V. Langmuir 1992, 8, 2405.

    10. [10]

      (10) Yan, P.; Jin, C.; Wang, C.; Ye, J.; Xiao, J. J. Colloid Interface Sci. 2005, 282, 188.

    11. [11]

      (11) Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1982, 86, 3866.

    12. [12]

      (12) Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1983, 87, 506.

    13. [13]

      (13) Malovikova, A.; Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1984, 88, 1930.

    14. [14]

      (14) Hansson, P.; Almgren, M. J. Phys. Chem. 1995, 99, 16684.

    15. [15]

      (15) Wang, C.; Tam, K. C. Langmuir 2002, 18, 6484.

    16. [16]

      (16) Wang, C.; Tam, K. C,; Jenkins, R. D. ; Tan C. B. J. Phys. Chem. B 2003, 107, 4667.

    17. [17]

      (17) Langevin, D. Adv. Colloid Interface Sci. 2009, 147-148, 170.

    18. [18]

      (18) Trewavas, A. Anal. Biochem. 1967, 21, 324.

    19. [19]

      (19) Izumrudov, V. A.; Zhiryakova, M. V.; ulko, A. A. Langmuir 2002, 18, 10348.

    20. [20]

      (20) Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B. J. Phys. Chem. B 2005, 109, 10458.

    21. [21]

      (21) Cardenas, M.; Schillen, K.; Nylander, T. Phys. Chem. Chem. Phys. 2004, 6,1603.

    22. [22]

      (22) Dias, R.; Melnikov, S. M.; Lindman, B. Miguel, M. Langmuir 2000, 16, 9577.

    23. [23]

      (23) Smith, P.; Lynden-Bell, R. M.; Smith, W. Phys. Chem. Chem. Phys. 2000, 2, 1305.

    24. [24]

      (24) Zabner, J. Adv. Drug Deliver. Rev. 1997, 27, 17.

    25. [25]

      (25) Miguel, M. G.; Pais, A. A. C. C.; Dias, R. S.; Leal, C.; Rosa, M.; Lindman B. Colloids and Surfaces A-Physicochem. Eng. Aspects 2003, 228, 43.

    26. [26]

      (26) Dias, R. S.; Pais, A. A. C. C.; Miguel, M. G.; Lindman, B. Colloids and Surfaces A-Physicochem. Eng. Aspects 2004, 250, 115.

    27. [27]

      (27) Zhao, X.; Shang, Y.; Liu, H.; Hu, Y. J. Colloid Interface Sci. 2007, 314, 478.

    28. [28]

      (28) Evans, D. F.; Wennerstrom, H. The Colloidal Domain. 2nd ed.; Wiley-VCH: New York, 1999.

    29. [29]

      (29) Nguyen, T. T.; Shklovskii, B. I. J. Chem. Phys. 2001, 114, 5905.

    30. [30]

      (30) Cooper, C. L.; Dubin, P. L.; Kayitmazer, A. B.; Turksen, S. Curr. Opin. Colloid Interface Sci. 2005, 10, 52.

    31. [31]

      (31) Linse, P.; Jonsson, M. J. Chem. Phys. 2001, 115, 3406.

    32. [32]

      (32) Wallin, T.; Linse, P. Langmuir 1996, 12, 305.

    33. [33]

      (33) Wallin, T.; Linse, P. J. Phys Chem. 1996, 100, 17873.

    34. [34]

      (34) Wallin, T.; Linse, P. J. Phys. Chem. B 1997, 101, 5506.

    35. [35]

      (35) Savariar, E. N.; Ghosh S.; nzález, D. C.; Thayumanavan, S. J. Am. Chem. Soc. 2008, 130, 5416.

    36. [36]

      (36) Darden, T.; York, D.; Pedersen, L. J. Phys Chem. 1993, 98, 10089.

    37. [37]

      (37) von Ferber, C.; L?wen, H. Faraday Discuss. 2005,?128, 389.

    38. [38]

      (38) ldraich, M.; Schwartz, J. R.; Burns, J. L. Colloids and Surfaces A-Physicochemi. Eng. Aspects 1997, 125, 231.

    39. [39]

      (39) Guillot, S.; Delsanti, M.; Desert, S.; Langevin, D. Langmuir 2003, 19, 230.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(1233)
  • Abstract views(3082)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return