Citation: YANG Zong-Xian, XIE Luo-Gang. Adhesion of Small Cux (x=1-4) Clusters on a CeO2(111) Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 851-857. doi: 10.3866/PKU.WHXB20110405 shu

Adhesion of Small Cux (x=1-4) Clusters on a CeO2(111) Surface

  • Received Date: 20 December 2010
    Available Online: 25 February 2011

    Fund Project: 国家自然科学基金(10674042) (10674042)河南省科技创新杰出人才计划(104200510014)资助项目 (104200510014)

  • We investigated the adhesion behavior of Cu clusters (Cux, x=1-4) on a CeO2(111) surface using first-principles density functional theory (DFT). We found that small Cux clusters (x=2, 3) tended to adhere as two dimensional (2D) planar structures on the CeO2(111) surface. For the Cu4 cluster, a three dimensional (3D) tetrahedral structure is preferred and the 3D Cu4 particle is positively charged because of charge transfer from Cu 3d to Ce 4f. The transition from a 2D planar structure to 3D particles occurs with a transition barrier of 1.05 eV and the favorable route consists of one Cu atom hopping directly from the interface site to the hollow site above the Cu triangle. Because the Cu-O interactions are comparable with the Cu-Cu intra-cluster interactions, their competition determines the morphologies of the eventual Cu clusters on CeO2. The 3D positively charged Cu4 particle obtained on CeO2 is expected to result in distinct catalytic performance compared to the unsupported Cu4 cluster for water dissociation, and thus the water gas shift reactions.

  • 加载中
    1. [1]

      (1) Rodríguez, J.; Evans, J.; Graciani, J.; Park, J.; Liu, P.; Hrbek, J.; Sanz, J. J. Phys. Chem. C 2009, 113, 7364.

    2. [2]

      (2) Rodríguez, J.; Liu, P.; Wang, X.; Wen, W.; Hanson, J.; Hrbek, J.; Pérez, M.; Evans, J. Catal. Today 2009, 143, 45.

    3. [3]

      (3) Tang, Q.; Liu, Z. J. Phys. Chem. C 2010, 114, 8423.

    4. [4]

      (4) Feldheim, D. Science 2007, 316, 699.

    5. [5]

      (5) Wang, X.; Rodriguez, J.; Hanson, J.; Gamarra, D.; Martínez- Arias, A.; Fernández-García, M. J. Phys. Chem. B 2006, 110, 428.

    6. [6]

      (6) Rodríguez, J.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Angew. Chem. Int. Edit. 2007, 46, 1329.

    7. [7]

      (7) Park, J.; Graciani, J.; Evans, J.; Stacchiola, D.; Ma, S.; Liu, P.; Nambu, A.; Sanz, J.; Hrbek, J.; Rodriguez, J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4975.

    8. [8]

      (8) Saito, M.; Murata, K. Catal. Surv. Asia. 2004, 8, 285.

    9. [9]

      (9) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.

    10. [10]

      (10) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.

    11. [11]

      (11) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

    12. [12]

      (12) Bl?chl, P. E.; Jepsen, O.; Andersen, O. K. Phys. Rev. B 1994, 49, 16223.

    13. [13]

      (13) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505.

    14. [14]

      (14) Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B 1991, 44, 943.

    15. [15]

      (15) Yang, Z.; Lu, Z.; Luo, G. Phys. Rev. B 2007, 76, 75421.

    16. [16]

      (16) Yang, Z.; Fu, Z.; Wei, Y.; Lu, Z. J. Phys. Chem. C 2008, 112, 15341.

    17. [17]

      (17) Nolan, M.; Gri leit, S.; Sayle, D. C.; Parker, S. C.; Watson, G. W. Surf. Sci. 2005, 576, 217.

    18. [18]

      (18) Henkelman, G.; Uberuaga, B.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.

    19. [19]

      (19) Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comp. Mater. Sci. 2006, 36, 354.

    20. [20]

      (20) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.

    21. [21]

      (21) Li, B.; Ezekoye, O.; Zhang, Q.; Chen, L.; Cui, P.; Graham, G.; Pan, X. Phys. Rev. B 2010, 82, 125422.

    22. [22]

      (22) Jug, K.; Zimmermann, B.; Calaminici, P.; Kster, A. J. Chem. Phys. 2002, 116, 4497.

    23. [23]

      (23) Spasov, V.; Lee, T.; Ervin, K. J. Chem. Phys. 2000, 112, 1713.

    24. [24]

      (24) Alfonso, D.; Jaffe, J.; Hess, A.; Gutowski, M. Phys. Rev. B 2003, 68, 155411.

    25. [25]

      (25) Musolino, V.; Selloni, A.; Car, R. Phys. Rev. Lett. 1999, 83, 3242.

    26. [26]

      (26) Musolino, V.; Dal Corso, A.; Selloni, A. Phys. Rev. Lett. 1999, 83, 2761.

    27. [27]

      (27) Yang, Z.; He, B.; Lu, Z.; Hermansson, K. J. Phys. Chem. C 2010, 114, 4486.

    28. [28]

      (28) Jung, K.; Bell, A. Catal. Lett. 2002, 80, 63.

    29. [29]

      (29) Chen, L.; Johnson, J. K. Phys. Rev. Lett. 2005, 94, 125701.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    14. [14]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(1287)
  • Abstract views(3102)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return