Citation: LIU Yu-Zhu, QIN Chao-Chao, ZHANG Song, WANG Yan-Mei, ZHANG Bing. Ultrafast Dynamics of the First Excited State of Chlorobenzene[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 965-970. doi: 10.3866/PKU.WHXB20110404 shu

Ultrafast Dynamics of the First Excited State of Chlorobenzene

  • Received Date: 16 December 2010
    Available Online: 25 February 2011

    Fund Project: 国家自然科学基金(20973194) (20973194)中国科学院创新基金(KJCX1-YW-N30)资助项目 (KJCX1-YW-N30)

  • Ultrafast dynamics of the first excited state (S1) of chlorobenzene was studied using a combination of femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. One-photon absorption at 266.7 nm was used to populate the S1 state of chlorobenzene. The time evolution of the parent ion signals consists of different biexponential decays. One is a fast component on a timescale of (152±3) fs and the other is a slow component with a timescale of (749±21) ps. Time- resolved electron kinetic energies (eKE) and time-resolved photoelectron angular distributions (PADs) were extracted from time-resolved photoelectron imaging and are discussed in detail. The ultrafast process with a time constant of (152±3) fs is a population transfer within the S1 state, and only a vibrational energy transfer process with strong coupling is a reasonable explanation. This is attributed to an ultrafast process of dissipative intramolecular vibrational energy redistribution (IVR). The lifetime of the S1 state was determined to be (749±21) ps, and its deactivation was due to slow internal conversion to the ground state. Additionally, nonadiabatic alignment and rotational dephasing of the S1 state of chlorobenzene, as a typical asymmetric top molecule, were observed. The first C-type and J-type recurrences are expected at delay time of 205.8 and 359.3 ps, respectively.

  • 加载中
    1. [1]

      (1) Stolow, A.; Bragg, A. E.; Neumark, D. M. Chem. Rev. 2004, 104, 1719.

    2. [2]

      (2) Suzuki, T. Annu. Rev. Phys. Chem. 2006, 57, 555.

    3. [3]

      (3) Neumark, D. M. Annu. Rev. Phys. Chem. 2001, 52, 255.

    4. [4]

      (4) Seideman, T. Annu. Rev. Phys. Chem. 2002, 53, 41.

    5. [5]

      (5) Jain, Y. S.; Bist, H. D. J. Mol. Spcctrosc. 1973, 47, 126.

    6. [6]

      (6) Wright, T. G.; Panov, S. I.; Millcr, T. A. J. Chem. Phys. 1995, 102, 4793.

    7. [7]

      (7) Imhof, P.; Kleinermanns, K. Chem. Phys. 2001, 270, 227.

    8. [8]

      (8) Kadi, M.; Davidsson, J.; Tarnovsky, A. N.; Rasmusson, M.; Akesson, E. Chem. Phys. Lett. 2001, 350, 93.

    9. [9]

      (9) Liu, B.; Wang, B.; Wang, Y.; Wang, L. Chem. Phys. Lett. 2009, 477, 266.

    10. [10]

      (10) Liu, Y. J.; Persson, P.; Sten, L. J. Phys. Chem. A 2004, 108, 2339.

    11. [11]

      (11) Liu, Y. J.; Persson, P.; Sten, L. J. Chem. Phys. 2004, 121, 11000.

    12. [12]

      (12) Tang, Y.; Ji, L.; Tang, B. F.; Zhu, R. S.; Zhang, S.; Zhang, B. Acta Phys. -Chim. Sin., 2004, 20, 344.

    13. [13]

      [唐 颖, 姬 磊, 唐碧峰, 朱荣淑, 张 嵩, 张 冰. 物理化学学报, 2004, 20, 344.]

    14. [14]

      (13) Zhang, F.; Cao, Z. Z.; Qin, X.; Liu, Y. Z.; Wang, Y. M.; Zhang, B. Acta Phys. -Chim. Sin., 2008, 24, 1335.

    15. [15]

      [张 锋, 曹振洲, 覃 晓, 刘玉柱, 王艳梅, 张 冰. 物理化学学报, 2008, 24, 1335.]

    16. [16]

      (14) Wei, Z.; Zhang, F.; Wang,Y.; Zhang, B. Chin. J. Chem. Phys. 2007, 20, 419.

    17. [17]

      (15) Liu, Y.; Tang, B.; Shen, H.; Zhang, S.; Zhang, B. Opt. Express 2010, 18, 5791.

    18. [18]

      (16) Nicolaides, A.; Smith, D. M.; Jensen, F.; Radom, L. J. Am. Chem. Soc. 1997, 119, 8083.

    19. [19]

      (17) Wilkerson, C. W., Jr.; Reilly, J. P. Anal. Chem. 1990, 62, 1804.

    20. [20]

      (18) Deguchi, T.; Takeyasu, N.; Imasaka, T. Appl. Spectrosc. 2002, 56, 1241.

    21. [21]

      (19) Dribinski, V.; Ossadtchi, A.; Mandelshtam,V. A.; Reisler, H. Rev. Sci. Instrum. 2002, 73, 2634.

    22. [22]

      (20) Ruscic, B.; Klaslnc, L.; Wolf, A.; Knop, J. V. J. Phys. Chem. 1981, 85, 1486.

    23. [23]

      (21) Baskin, J. S.; Felker, P. M.; Zewail, A. H. J. Phys. Chem. 1981, 85, 2483.

    24. [24]

      (22) Wang, G.; Zhu, R.; Zhang, H.; Han, K.; He, G.; Lou, N. Chem. Phys. Lett. 1998, 288, 429.

    25. [25]

      (23) Ichimuraa, T.; Moria, Y.; Shinoharab, H.; Nishic, N. Chem. Phys. 1994, 189, 117.

    26. [26]

      (24) Yang, C. N. Phys. Rev. 1948, 74, 764.

    27. [27]

      (25) Poynter, R. L. J. Chem. Phys. 1963, 39, 1962.

    28. [28]

      (26) Cvitas, T.; Hollas, J. M. Mol. Phys. 1970, 18, 101.

    29. [29]

      (27) Felker, P. M. J. Phys. Chem. 1992, 96, 1844.


  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    5. [5]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    11. [11]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    16. [16]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(1297)
  • Abstract views(2315)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return