Citation: LIU Yun, HE You-Zhou, YUAN Li-Hua, FENG Wen. Synthesis and Self-Assembly of an Oli aramide Containing Multiple Hydrogen Bonds[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 918-924. doi: 10.3866/PKU.WHXB20110403 shu

Synthesis and Self-Assembly of an Oli aramide Containing Multiple Hydrogen Bonds

  • Received Date: 13 December 2010
    Available Online: 24 February 2011

    Fund Project: 国家自然科学基金(20874062)资助项目 (20874062)

  • An oli aramide duplex containing multiple hydrogen bonds was found to under self-assembly in the absence of its corresponding complementary strand. The self-assembly behavior of the molecular oli aramide was examined using multiple techniques including ultraviolet-visible (UV-Vis) spectrum, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The result from the UV-Vis experiment indicated a hypsochromic shift within the ultraviolet region in 1,2-dichloroethane with increasing temperature, suggesting partial disintegration of supramolecular aggregates. The oli aramide was found to self-assemble in solvents of different polarity presenting different types of morphologies. For example, reticulation-like morphology was observed when using toluene as a solvent; an irregular honeycomb appeared in the mixed, relatively less polar dichloromethane and cyclohexane. In addition, stable solid balls formed instead of vesicles upon self-assembling in a mixed polar solvent of chloroform and methanol. The diameters of these spherical aggregates increased with concentration. Furthermore, the transformation of assemblies from tubular fibers in hot acetonitrile to solid spherical aggregates was observed upon cooling.

  • 加载中
    1. [1]

      (1) Elemans, J. A. A. W.; Hameren, R. V.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006, 18, 1251.

    2. [2]

      (2) Kato, T. Science 2002, 295, 2414.

    3. [3]

      (3) Dietz, H.; Douglas S. M.; Shih, W. M. Science 2009, 325, 725.

    4. [4]

      (4) Douglas, T.; Young, M. Nature 1998, 393, 152.

    5. [5]

      (5) Du, C.; Falini, G.; Fermani, S.; Abbott, C.; Moradian-Oldak, J. Science 2005, 307, 1450.

    6. [6]

      (6) Cheng, X. H.; Ju, X. P.; Hoeger, S. Chin. J. Org. Chem. 2006, 26, 733.

    7. [7]

      [程晓红, 鞠秀萍, Hoeger, S. 有机化学, 2006, 26, 733.]

    8. [8]

      (7) Ryu, J.-H.; Hong, D.-J.; Lee, M. Chem. Commun. 2008, 1043.

    9. [9]

      (8) Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.

    10. [10]

      (9) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schening, A. P. H. J. Chem. Rev. 2005, 105, 1491.

    11. [11]

      (10) Ulijn, R. V.; Smith, A. M. Chem. Soc. Rev. 2008, 37, 664.

    12. [12]

      (11) Zhao, X. J.; Zhang, S. G. Chem. Soc. Rev. 2006, 35, 1105.

    13. [13]

      (12) Yang, Y. A.; Yuan, L. H.; Hu, J. C.; Zou, S. L.; Feng, W.; ng, B. Acta Phys. -Chim. Sin. 2010, 26, 1557

    14. [14]

      [杨永安, 袁立华, 胡晋川, 邹树良, 冯 文, 龚 兵. 物理化学学报, 2010, 26, 1557]

    15. [15]

      (13) Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. J. Am. Chem. Soc. 2002, 124, 10674.

    16. [16]

      (14) Bhattacharya, S.; Acharya, S. N. G. Chem. Mater. 1999, 11, 3504.

    17. [17]

      (15) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684.

    18. [18]

      (16) Lim, Y. B.; Lee, E.; Lee, M. Angew. Chem. Int. Edit. 2007, 46, 9011.

    19. [19]

      (17) Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. J. Am. Chem. Soc. 2008, 130, 14408.

    20. [20]

      (18) Shirakawa, M.; Fujita, N.; Tani, T.; Kaneko, K.; Ojima, M.; Fujii, A.; Ozaki, M.; Shinkai, S. Chem. Eur. J. 2007, 13, 4155.

    21. [21]

      (19) Liang, Q.; Guan, B.; Jiang, M. Pro. Chem. 2010, 22, 388

    22. [22]

      [梁 清, 官 冰, 江 明. 化学进展, 2010, 22, 388]

    23. [23]

      (20) Kim, H. J.; Lee, J.; Kim, T. H.; Lee, T. S.; Kim, J. Adv. Mater. 2008, 20, 1117.

    24. [24]

      (21) Kim, J. K.; Lee, E. Lim, Y. B.; Lee, M. Angew. Chem. Int. Edit. 2008, 47, 4662.

    25. [25]

      (22) Che, Y.; Datar, A., Balakrishnan, K.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 7234.

    26. [26]

      (23) Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481.

    27. [27]

      (24) Diegelmann, S. R.; rham, J. M.; Tovar, J. D. J. Am. Chem. Soc. 2008, 130, 13840.

    28. [28]

      (25) Li, C. Z.; Jang, X. K.; Li, Z. T.; Gao, X.; Wang, J. R. Chin. J. Org. Chem. 2007, 27, 188.

    29. [29]

      [李昌治, 蒋锡夔, 黎占亭, 高 翔, 王金瑞. 有机化学, 2007, 27, 188.]

    30. [30]

      (26) Wang, C.; Yin, S. C.; Chen, S. L.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Angew. Chem. Int. Edit. 2008, 47, 9049.

    31. [31]

      (27) Alfonso, I.; Bru, M.; Burguete, M. I.; García-Verdu , E.; Luis, S. V. Chem. Eur. J. 2010, 16, 1246.

    32. [32]

      (28) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang, L. J. Am. Chem. Soc. 2006, 128, 7390.

    33. [33]

      (29) Yang, X. W.; ng, B. Angew. Chem. Int. Edit. 2005, 44, 1352.

    34. [34]

      (30) Yang, X. W.; Hua, F. J.; Yamato, K.; Ruckenstein, E.; ng, B.; Kim, W.; Ryu, C. Y. Angew. Chem. Int. Edit. 2004, 43, 6471.

    35. [35]

      (31) Cao, R. K.; Zhou, J. J.; Wang, W.; Feng, W.; Li, X. H.; Zhang, P. H.; Deng, P. C.; Yuan, L. H.; ng, B. Org. Lett. 2010, 12, 2958.

    36. [36]

      (32) Zeng, H. Q.; Miller, R. S.; Flowers, R. A.; ng, B. J. Am. Chem. Soc. 2000, 122, 2635.

    37. [37]

      (33) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J. M.; Zang, L. J. Am. Chem. Soc., 2005, 127, 10496.

    38. [38]

      (34) Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. D.; Schenning, A. H. J.; Schryver, F. C. D.; Meijer, E. W. Angew. Chem. Int. Edit. 2004, 116, 74.

    39. [39]

      (35) Jun, Y. J.; Toti, U. S.; Kim, H. Y.; Yu, J. Y.; Jeong, B.; Jun, M. J.; Sohn, Y. S. Angew. Chem. Int. Edit. 2006, 45, 6173.

    40. [40]

      (36) Zhou, X. H.; Luo, J. D.; Huang, S.; Kim, T. D.; Shi, Z. W.; Cheng, Y. J.; Jang, S. H.; Knorr, J. D. B.; Overney, R. M.; Jen, A. K. Y. Adv. Mater. 2009, 21, 1976.

    41. [41]

      (37) Wang, D. G.; Hsu, J. F.; Baguia, M.; Dusevich, V.; Wang, Y.; Liu, Y.; Holdera, A. J.; Peng, Z. H. Tetrahedron Lett. 2009, 2147.


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    14. [14]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    15. [15]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    16. [16]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

Metrics
  • PDF Downloads(1225)
  • Abstract views(2497)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return