Citation: SU Ya-Ling, LI Yi, DU Ying-Xun, LEI Le-Cheng. Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 939-945. doi: 10.3866/PKU.WHXB20110401
-
Improving the photocatalytic activity and the utilization of visible light of TiO2 is the most important research topics in the photocatalytic field. To improve the photocatalytic activity of TiO2, we used chemical vapor deposition (CVD) to dope TiO2 nanotubes with fluorine. Scanning electron microscopy (SEM) images showed that the annealing temperature significantly affected the morphological integrity of TiO2 nanotubes. Upon annealing at 550 and 700 °C, the structure of F-doped TiO2 nanotubes suffered from an observable disintegration of morphological integrity. X-ray diffraction (XRD) results indicated that the F impurity retarded the anatase-rutile phase transition. Fluorine was successfully doped into TiO2 by CVD, as indicated by the X-ray photoelectron spectroscopy (XPS) results. F-doped TiO2 nanotubes showed higher photocatalytic activity. First-principles calculations suggested that the F 2p states were located in the lower-energy range of valence band (VB) and less mixed with O 2p states. It thus contributed little to the reduction of the optical band gap. This is consistent with the finding that the band gap of F-doped TiO2 is very close to that of undoped TiO2. Therefore, the higher catalytic activity of F-doped TiO2 should be attributed to the creation of surface oxygen vacancies upon F-doping, which enhances surface acidity and increases the amount of Ti3+ ions.
-
-
[1]
(1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. 2000, 1, 1.
-
[2]
(2) Linsebigler, A. L.; Lu, G. Q.; Yates, T., Jr. Chem. Rev. 1995, 95, 735.
-
[3]
(3) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.
-
[4]
(4) Mokawa, T.; Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Jpn. J. Appl. Phys. 2001, 40, 561.
-
[5]
(5) Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483.
-
[6]
(6) Khan, S. U. M.; Al-shahry, M.; Ingler, W. B., Jr. Science 2002, 297, 2243.
-
[7]
(7) Irie, H.; Watanabe, Y.; Hashimoto, K. Chem. Lett. 1998, 32, 772.
-
[8]
(8) Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Chem. Lett. 2003, 32, 330.
-
[9]
(9) Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364.
-
[10]
(10) Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.; Liu, Y. J. Chem. Mater. 2005, 17, 1548.
-
[11]
(11) Song, S.; Tu, J. J.; Xu, L. J.; Xu, X.; He, Z. Q.; Qiu, J. P.; Ni, J. G.; Chen, J. M. Chemosphere 2008, 73, 1401.
-
[12]
(12) Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.
-
[13]
(13) Li, D.; Haneda, H.; Hishita, S.; Kolodiazhnyi T.; Haneda, H. J. Solid State Chem. 2005, 178, 3293.
-
[14]
(14) Li, D.; Haneda, H.; Hishita, S.; Ohashi,N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126, 69.
-
[15]
(15) Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Patrik, L. J. Photochem. Photobiol. A 2006, 184, 282.
-
[16]
(16) Tang, J.; Quan, H.; Ye, J. Chem. Mater. 2007, 19, 116.
-
[17]
(17) Varghese, O. K.; ng, D.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.
-
[18]
(18) Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Environ. Sci. Technol. 2005, 39, 3770.
-
[19]
(19) Hahn, R.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2007, 9, 947.
-
[20]
(20) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 2100.
-
[21]
(21) Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2005, 7, 505.
-
[22]
(22) Taveira, L. V.; Macak, J. M.; Tsuchiya, H.; Dick, L. P.; Schmuki, P. J. Electrochem. Soc. 2005, 152, B405.
-
[23]
(23) Macak, J. M.; Sirotna, K.; Schmuki, P. Electrochim. Acta 2005, 50, 3679.
-
[24]
(24) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J Mater. Res. 2005, 20, 230.
-
[25]
(25) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova S.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 7463.
-
[26]
(26) Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H.; Dick L. F. P.; Schmuki, P. Electrochem. Commun. 2006, 8, 544.
-
[27]
(27) Zlamal, M.; Macak, J. M.; Schmuki, P.; Krysa, J. Electrochem. Commun. 2007, 9, 2822.
-
[28]
(28) Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol. 2007, 41, 4735.
-
[29]
(29) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Kleber, S.; Schmuki, P. Chem. Phys. Lett. 2006, 419, 426.
-
[30]
(30) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano. Lett. 2006, 6, 1080.
-
[31]
(31) Giovanni, A.; Battiston, G. A.; Gerbasi, R.; Porchia, M.; Man , A. Thin Solid Films 1994, 239, 186.
-
[32]
(32) Yu, J. C.; Ho, W. K.; Yu, J. G.; Hark, S. K.; Iu, K. Langmuir 2003, 19, 3889.
-
[33]
(33) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Mat. 2002, 14, 2717.
-
[34]
(34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
-
[35]
(35) Lin, J.; Yu, J. C. J. Photochem. Photobiol. A: Chem. 1998, 116, 63.
-
[36]
(36) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.
-
[37]
(37) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.
-
[38]
(38) Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125.
-
[39]
(39) Sanjinés, R.; Tang, H.; Berger, H.; zzo, F.; Margaritondo, G.; Lévy, F. J. Appl. Phys. 1994, 75, 2945.
-
[40]
(40) Bendavid, A.; Martin, P. J.; Jamting, A.; Takikawa, H. Thin Solid Films 1999, 355-356, 6.
-
[41]
(41) Chang, H. J.; Kong, K. J.; Choi, Y. S.; In, E. J.; Choi, Y. M.; Baeg, J. O.; Moon, S. J. Chem. Phys. Lett. 2004, 398, 449.
-
[42]
(42) Zhao, J. X.; Dai, B. Q. Mater. Chem. Phys. 2004, 88, 244.
-
[43]
(43) Yang, K. S.; Dai, Y.; Huang, B. B., Whangbo, M. H. Chem. Mater. 2008, 20, 6528.
-
[44]
(44) Argaman, N.; Mako, G. Am. J. Phys. 2000, 68, 69.
-
[1]
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[3]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[4]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[5]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[6]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[7]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[8]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[9]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[10]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[13]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[14]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[15]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[16]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[17]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[18]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[19]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[20]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[1]
Metrics
- PDF Downloads(1740)
- Abstract views(2995)
- HTML views(4)