Citation: SU Ya-Ling, LI Yi, DU Ying-Xun, LEI Le-Cheng. Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 939-945. doi: 10.3866/PKU.WHXB20110401 shu

Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes

  • Received Date: 1 November 2010
    Available Online: 24 February 2011

    Fund Project: 河海大学水文水资源与水利工程科学国家重点实验室开放研究基金(2009490911)与国家自然科学青年基金(20906097)资助项目 (2009490911)与国家自然科学青年基金(20906097)

  • Improving the photocatalytic activity and the utilization of visible light of TiO2 is the most important research topics in the photocatalytic field. To improve the photocatalytic activity of TiO2, we used chemical vapor deposition (CVD) to dope TiO2 nanotubes with fluorine. Scanning electron microscopy (SEM) images showed that the annealing temperature significantly affected the morphological integrity of TiO2 nanotubes. Upon annealing at 550 and 700 °C, the structure of F-doped TiO2 nanotubes suffered from an observable disintegration of morphological integrity. X-ray diffraction (XRD) results indicated that the F impurity retarded the anatase-rutile phase transition. Fluorine was successfully doped into TiO2 by CVD, as indicated by the X-ray photoelectron spectroscopy (XPS) results. F-doped TiO2 nanotubes showed higher photocatalytic activity. First-principles calculations suggested that the F 2p states were located in the lower-energy range of valence band (VB) and less mixed with O 2p states. It thus contributed little to the reduction of the optical band gap. This is consistent with the finding that the band gap of F-doped TiO2 is very close to that of undoped TiO2. Therefore, the higher catalytic activity of F-doped TiO2 should be attributed to the creation of surface oxygen vacancies upon F-doping, which enhances surface acidity and increases the amount of Ti3+ ions.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. 2000, 1, 1.

    2. [2]

      (2) Linsebigler, A. L.; Lu, G. Q.; Yates, T., Jr. Chem. Rev. 1995, 95, 735.

    3. [3]

      (3) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

    4. [4]

      (4) Mokawa, T.; Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Jpn. J. Appl. Phys. 2001, 40, 561.

    5. [5]

      (5) Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483.

    6. [6]

      (6) Khan, S. U. M.; Al-shahry, M.; Ingler, W. B., Jr. Science 2002, 297, 2243.

    7. [7]

      (7) Irie, H.; Watanabe, Y.; Hashimoto, K. Chem. Lett. 1998, 32, 772.

    8. [8]

      (8) Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Chem. Lett. 2003, 32, 330.

    9. [9]

      (9) Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364.

    10. [10]

      (10) Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.; Liu, Y. J. Chem. Mater. 2005, 17, 1548.

    11. [11]

      (11) Song, S.; Tu, J. J.; Xu, L. J.; Xu, X.; He, Z. Q.; Qiu, J. P.; Ni, J. G.; Chen, J. M. Chemosphere 2008, 73, 1401.

    12. [12]

      (12) Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.

    13. [13]

      (13) Li, D.; Haneda, H.; Hishita, S.; Kolodiazhnyi T.; Haneda, H. J. Solid State Chem. 2005, 178, 3293.

    14. [14]

      (14) Li, D.; Haneda, H.; Hishita, S.; Ohashi,N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126, 69.

    15. [15]

      (15) Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Patrik, L. J. Photochem. Photobiol. A 2006, 184, 282.

    16. [16]

      (16) Tang, J.; Quan, H.; Ye, J. Chem. Mater. 2007, 19, 116.

    17. [17]

      (17) Varghese, O. K.; ng, D.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.

    18. [18]

      (18) Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Environ. Sci. Technol. 2005, 39, 3770.

    19. [19]

      (19) Hahn, R.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2007, 9, 947.

    20. [20]

      (20) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 2100.

    21. [21]

      (21) Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2005, 7, 505.

    22. [22]

      (22) Taveira, L. V.; Macak, J. M.; Tsuchiya, H.; Dick, L. P.; Schmuki, P. J. Electrochem. Soc. 2005, 152, B405.

    23. [23]

      (23) Macak, J. M.; Sirotna, K.; Schmuki, P. Electrochim. Acta 2005, 50, 3679.

    24. [24]

      (24) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J Mater. Res. 2005, 20, 230.

    25. [25]

      (25) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova S.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 7463.

    26. [26]

      (26) Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H.; Dick L. F. P.; Schmuki, P. Electrochem. Commun. 2006, 8, 544.

    27. [27]

      (27) Zlamal, M.; Macak, J. M.; Schmuki, P.; Krysa, J. Electrochem. Commun. 2007, 9, 2822.

    28. [28]

      (28) Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol. 2007, 41, 4735.

    29. [29]

      (29) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Kleber, S.; Schmuki, P. Chem. Phys. Lett. 2006, 419, 426.

    30. [30]

      (30) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano. Lett. 2006, 6, 1080.

    31. [31]

      (31) Giovanni, A.; Battiston, G. A.; Gerbasi, R.; Porchia, M.; Man , A. Thin Solid Films 1994, 239, 186.

    32. [32]

      (32) Yu, J. C.; Ho, W. K.; Yu, J. G.; Hark, S. K.; Iu, K. Langmuir 2003, 19, 3889.

    33. [33]

      (33) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Mat. 2002, 14, 2717.

    34. [34]

      (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

    35. [35]

      (35) Lin, J.; Yu, J. C. J. Photochem. Photobiol. A: Chem. 1998, 116, 63.

    36. [36]

      (36) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.

    37. [37]

      (37) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.

    38. [38]

      (38) Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125.

    39. [39]

      (39) Sanjinés, R.; Tang, H.; Berger, H.; zzo, F.; Margaritondo, G.; Lévy, F. J. Appl. Phys. 1994, 75, 2945.

    40. [40]

      (40) Bendavid, A.; Martin, P. J.; Jamting, A.; Takikawa, H. Thin Solid Films 1999, 355-356, 6.

    41. [41]

      (41) Chang, H. J.; Kong, K. J.; Choi, Y. S.; In, E. J.; Choi, Y. M.; Baeg, J. O.; Moon, S. J. Chem. Phys. Lett. 2004, 398, 449.

    42. [42]

      (42) Zhao, J. X.; Dai, B. Q. Mater. Chem. Phys. 2004, 88, 244.

    43. [43]

      (43) Yang, K. S.; Dai, Y.; Huang, B. B., Whangbo, M. H. Chem. Mater. 2008, 20, 6528.

    44. [44]

      (44) Argaman, N.; Mako, G. Am. J. Phys. 2000, 68, 69.


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(1740)
  • Abstract views(3028)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return