Citation: WU Mei-Xia, LI Wei, ZHANG Ming-Hui, TAO Ke-Yi. Preparation and Characterization of NiB Amorphous Alloy Modified Using Chitosan[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 953-958. doi: 10.3866/PKU.WHXB20110342 shu

Preparation and Characterization of NiB Amorphous Alloy Modified Using Chitosan

  • Received Date: 11 November 2010
    Available Online: 22 February 2011

    Fund Project: 国家自然科学基金(21073098) (21073098) 高等教育博士基金(20090031110015) (20090031110015)新世纪优秀人才计划(NCET-10-0481)资助项目 (NCET-10-0481)

  • NiB amorphous alloy catalyst (NiB-CS) was prepared by direct reduction using the chemical- reduction method with chitosan as a stabilizer. The amorphous structure, atomic composition, and particle size of the as-prepared catalysts were characterized by X-ray diffraction (XRD), inductively coupled plasma spectrometry (ICP), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The catalytic behavior during the hydrogenation of furfuryl alcohol (FA) to tetrafurfural alcohol (THFA) was studied and compared with the NiB catalyst prepared without chitosan. The amorphous NiB-CS catalyst was found to be more reactive than the NiB catalyst. The superior catalytic activity of the NiB-CS catalyst is attributed to the small NiB particles and the high surface content of Ni active species.

  • 加载中
    1. [1]

      (1) Schwarz, J. A.; Contescu, C.; Contescu, A. Chem. Rev. 1995, 95, 477.

    2. [2]

      (2) Sataporn, K.; Okorn, M.; Piyasan, P.; Joongjai, P. Catal. Commun. 2008, 10, 86.

    3. [3]

      (3) Wonterghem, J. V.; Morup, S.; Koch, C. J. W.; Charles, S. W.; Wells, S. Nature 1986, 32, 622.

    4. [4]

      (4) Lu, H. H.; Yin, H. B.; Dai, W. L.; Wang, W. Catal. Commun. 2008, 10, 313.

    5. [5]

      (5) Wang, M. W.; Li, F. Y.; Zhang, R. B. Catal. Today 2004, 93-95,603.

    6. [6]

      (6) Chen, X. Y.; Wang, S. A.; Zhuang, J. H. J. Catal. 2004, 227, 419.

    7. [7]

      (7) Fang, J.; Chen, X. Y.; Liu, B. J. Catal. 2005, 229, 97.

    8. [8]

      (8) Chen, X. Y.; Lou, Z. Y.; Xie, S. H. Chem. Lett. 2006, 35, 390.

    9. [9]

      (9) Liu, Y. C.; Huang, C. Y.; Chen, Y. W. J. Nanopart. Res. 2006, 8, 223.

    10. [10]

      (10) Wu, Z. J.; Zhang, M. H.; Ge, S. H.; Zhang, Z. L.; Li, W.; Tao, K. Y. J. Mater. Chem. 2005, 15, 4928

    11. [11]

      (11) Collier, P. J.; Ig , J. A.; Whyman, R. J. Mol. Catal. A 1999, 146, 149.

    12. [12]

      (12) Reetz, M. T.; Helbig, W. J. Am. Chem. Soc. 1994, 116, 7401.

    13. [13]

      (13) Liu, M.; Yu, W.; Liu, H. J. Mol. Catal. A 1999, 138, 295.

    14. [14]

      (14) Kurihara, L. K.; Chow, G. M.; Schoen, P. E. Nanostruct. Mater. 1995, 5, 607.

    15. [15]

      (15) Ishizuki, N.; Tori e, K.; Esumi, K.; Meguro, K. Colloids Surf. 1991, 55, 15.

    16. [16]

      (16) Yuan, G. L.; Yin, M. Y.; Jiang, T. T.; Huang, M. Y.; Jiang, Y. Y. J. Mol. Catal. A: Chem. 2000, 159, 45.

    17. [17]

      (17) Guibal, E. Pro. Polym. Sci. 2005, 30, 71.

    18. [18]

      (18) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; pp 106-122.

    19. [19]

      (19) Wu, L. Q.; Lee, K.; Wang, X.; English, D. S.; Losert, W.; Payne, G. F. Langmuir. 2005, 21, 3641.

    20. [20]

      (20) Yonezawa, Y.; Kawabata, I.; Sato, T. Ber. Bunsen-Ges. Phys. Chem. 1996, 100, 39.

    21. [21]

      (21) Huang, H., Yang, X. Biomacromolecules 2004, 5, 2340.

    22. [22]

      (22) Song, Y.; Li, W.; Wang, Z. Y.; Sun, L. L.; Zhang, M. H.; Tao, K.Y. J. Fuel. Chem. Technol. 2006, 34, 483.

    23. [23]

      [宋 云, 李 伟, 王镇宇, 孙丽丽, 张明慧, 陶克毅. 燃料化学学报, 2006, 34, 483.]

    24. [24]

      (23) Wu, Z. J.; Ge, S. H.; Zhang, M. H.; Tao, K.Y.; Li, W. J. Colloid Interface Sci. 2009, 330, 359.

    25. [25]

      (24) Wang, L. J.; Li, W.; Zhang, M. H.; Tao, K.Y. Appl. Catal. A 2004, 259,185

    26. [26]

      (25) He, Y. G.; Qiao, M. H.; Hu, H. R.; Deng, J. F.; Fan, K. N. Appl. Catal. A 2002, 228, 29.

    27. [27]

      (26) Lu, Y. H.; Zhang, M. H.; Li, W.; Tao, K. Y.; Xue, Y. Z. Petrochem. Tech. 2005, 34, 523.

    28. [28]

      [卢银花, 张明慧, 李 伟, 陶克毅, 薛永珍, 石油化工, 2005, 34, 523.]

    29. [29]

      (27) Ge, S. H.; Wu, Z. J.; Zhang, M. H.; Li, W.; Tao, K.Y. Ind. Eng. Chem. Res. 2006, 45, 2229.

    30. [30]

      (28) Legrand, J.; Taleb, A.; ta, S.; Guittet, M. J.; Petit, C. Langmuuir 2002, 18, 4131.

    31. [31]

      (29) Chen, Y. Z.; Liaw, B. J.; Chiang, S. J. Appl. Catal. A 2005, 284, 97.


  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    10. [10]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    11. [11]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    12. [12]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

Metrics
  • PDF Downloads(896)
  • Abstract views(2300)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return