Citation: LIAO Rui-Jin, ZHU Meng-Zhao, ZHOU Xin, YANG Li-Jun, YAN Jia-Ming, SUN Cai-Xin. Molecular Dynamics Simulation of the Diffusion Behavior of Water Molecules in Oil and Cellulose Composite Media[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 815-824. doi: 10.3866/PKU.WHXB20110341 shu

Molecular Dynamics Simulation of the Diffusion Behavior of Water Molecules in Oil and Cellulose Composite Media

  • Received Date: 18 August 2010
    Available Online: 22 February 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB724505-1) (973) (2009CB724505-1) 国家自然科学基金(5107736) (5107736)中央高校基本科研业务费(CDJXS11152235)资助 (CDJXS11152235)

  • The diffusion behaviors of water molecules in oil-cellulose composite media were studied at different temperatures using a molecular dynamics simulation. By analyzing the formation of hydrogen bonds between the water molecules and cellulose we found that the water molecules that were initially present in the oil gradually spread to the cellulose, and hydrogen bonds were formed between them. The water molecules that were present in the cellulose initially also formed hydrogen bonds and were bound to cellulose molecules. By analyzing the diffusion coefficients of the water molecules at different temperatures we found that the diffusion behaviors of the water molecules in the two single-media, namely oil and cellulose, were very different because of their different polarities. The diffusion coefficients of the water molecules in the composite media were influenced greatly by the ratio of water molecules present in the oil and cellulose and a strong correlation was apparent between them. The water molecule-oil interaction energy and the water molecule-cellulose interaction energy were also strongly related to the polarities of the oil and the cellulose. The interaction energies also exhibited a strong correlation to the distribution of water molecules at different temperatures. This was the reason for the weakened influence of temperature on the diffusion coefficient of the water molecules, which was due to the different distributions of water molecules at different temperatures.

  • 加载中
    1. [1]

      (1) Garcia, B.; Bur s, J. C.; Alonso, A. M.; Sanz, J. IEEE T. Power Deliver. 2005, 20, 1417.

    2. [2]

      (2) Lundgaard, L. E.; Hansen, W.; Linhjell, D. IEEE T. Power Deliver. 2004, 19, 230.

    3. [3]

      (3) Oommen, T. V. IEEE Electr. Insul. Mag. 2002, 18, 6.

    4. [4]

      (4) Emsley, A. M.; Heywood, R. J.; Ali, M. IEE P-Sci. Meas. Tech. 2000, 147, 110.

    5. [5]

      (5) Heydon, R. G.; Gronowski, B.; Rungis, J. Condition Monitorin f Transformer Oil. In International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, Proceedings of International Conference on, Perth, Australia, Dec 1-3, 1998; Nayar, C. Islam, S., Eds.; IEEE: USA, 1998; pp249-253.

    6. [6]

      (6) Emsley, A. M.; Stevens. G. C. IEE P-Sci. Meas. Tech. 1994, 141, 324.

    7. [7]

      (7) Heywood, R. J.; Stevens, G. C.; Ferguson, C.; Emsley, A. M. Thermochimica Acta 1999, 332, 189.

    8. [8]

      (8) Liao, R. J.; Yang, L. J.; Sun, C. X. Proceedings of the CSEE 2006, 26, 114.

    9. [9]

      [廖瑞金, 杨丽君, 孙才新. 中国电机工程学报, 2006, 26, 114.]

    10. [10]

      (9) Yang, L. J.; Liao, R. J.; Sun, H. G. Transactions of China Electrotechnical Society 2009, 24, 27.

    11. [11]

      [杨丽君, 廖瑞金, 孙会刚. 电工技术学报, 2009, 24, 27.]

    12. [12]

      (10) Du, Y.; Zahn, M.; Lesieutm, B. C.; Mamishev, A. V.; Lindgren, S. R. IEEE Electr. Insul. Mag. 1999, 15, 11.

    13. [13]

      (11) Tao, C. G.; Feng, H. J.; Zhou, J.; Lü, L. H.; Lu, X. H. Acta Phys. -Chim. Sin. 2009, 25, 1373.

    14. [14]

      [陶长贵, 冯海军, 周 健, 吕玲红, 陆小华. 物理化学学报, 2009, 25, 1373.]

    15. [15]

      (12) Liu, F. L.; Xu, W. Transformer 2004, 41, 27.

    16. [16]

      [刘枫林, 徐 魏. 变压器, 2004, 41, 27.]

    17. [17]

      (13) Theodorou, D. N.; Suter, U. W. Macromolecules 1985, 18, 1467.

    18. [18]

      (14) Mazeau, K.; Heux, L. J. Phys. Chem. B 2003, 107, 2394.

    19. [19]

      (15) LeNeveu, D. M.; Rand, R. P.; Parsegian, V. A. Nature 1976, 259, 601.

    20. [20]

      (16) Lee, S. H.; Rossky, P. J. J. Chem. Phys. 1994, 100, 3334.

    21. [21]

      (17) Heiner, A. P.; Teleman, O. Langmuir 1997, 13, 511.

    22. [22]

      (18) Heiner, A. P.; Kuutti, L.; Teleman, O. Carbohydr. Res. 1998, 306(1-2), 205.

    23. [23]

      (19) Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook; Wiley-Interscience Publication: New York, 1999; p 476.

    24. [24]

      (20) Maple, J. R.; Dinur, U.; Hagler, A. T. Proc. Nat. Acad. Sci. 1988, 85, 5350.

    25. [25]

      (21) Maple, J. R.; Hwang, M. J.; Stockfisch, T. P.; Dinur, U.; Waldman, M.; Ewig, C. S; Hagler, A. T. J. Comput. Chem. 1994, 15, 162.

    26. [26]

      (22) Maple, J. R.; Hwang, M. J.; Stockfisch, T. P.; Hagler, A. T. Israel J. Chem. 1994, 34, 195.

    27. [27]

      (23) Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. J. Am. Chem. Soc., 1994, 116, 2978.

    28. [28]

      (24) Sun, H. Macromolecules, 1995, 28, 701.

    29. [29]

      (25) Mayo, S. L.; Olafson, B. D.; ddard, W. A. J. Phys. Chem. 1990, 94, 8897.

    30. [30]

      (26) Andrea, T. A.; Swope, W. C.; Andersen, H. C. J. Chem. Phys. 1983, 79, 4576.

    31. [31]

      (27) Berendsen, H. J. C.; Postma, J. P. M.; Funsteren, W. F. J. Chem. Phys. 1984, 81, 3684.

    32. [32]

      (28) Ewald, P. P. Ann. Phys. 1921, 64, 253.

    33. [33]

      (29) Materials Studio 4.0, discover/Accelrys: San Die , CA, 2005.

    34. [34]

      (30) Fang, J.; Gao, P. J. Arch. Biochem. Biophys., 1998, 353, 37.

    35. [35]

      (31) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987; pp 192-195.


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(2569)
  • Abstract views(3053)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return