Citation: ZHANG Qi-Bo, HUA Yi-Xin. Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 655-663. doi: 10.3866/PKU.WHXB20110339 shu

Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution

  • Received Date: 20 October 2010
    Available Online: 21 February 2011

    Fund Project: 国家自然科学基金(50864009, 50904031) (50864009, 50904031)高等学校博士学科点专项科研基金(20070674001)资助项目 (20070674001)

  • The effects of three newly synthesized alkylimidazolium based ionic liquids: 1-butyl-3- methylimidazolium hydrogen sulfate ([BMIM]HSO4), 1-hexyl-3-methylimidazolium hydrogen sulfate ([HMIM]HSO4), and 1-octyl-3-methylimidazolium hydrogen sulfate ([OMIM]HSO4), on the corrosion inhibition of copper in 0.5 mol·L-1 H2SO4 solution were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. All the measurements show that these alkylimidazolium ionic liquids are excellent inhibitors for copper in sulfuric acid media and the effectiveness of these inhibitors decreases as follows: [OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4 at the same concentration. Potentiodynamic polarization studies indicate that the three inhibitors are mixed type inhibitors and that both the cathodic and anodic processes of copper corrosion are suppressed. The electrochemical impedance results were evaluated using an equivalent circuit in which two constant phase elements (CPE) were offered for these systems with two time constants. Changes in impedance parameters (charge transfer resistance and double layer capacitance) with the addition of the inhibitors also suggest that these imidazolium based molecules act by adsorbing at the copper/solution interface. The adsorption of these imidazolium based compounds on the copper surface in an acidic solution is found to fit the Langmuir adsorption isotherm. Thermodynamic calculations reveal that the adsorption of inhibitors on the metal surface occurs by a physisorption-based mechanism involving a spontaneous process.

  • 加载中
    1. [1]

      (1) Tavakoli, H.; Shahrabi, T.; Hosseini, M. G. Mater. Chem. Phys. 2008, 109, 281.

    2. [2]

      (2) Elmorsi, M. A.; Hassanein, A. M. Corrosion Sci. 1999, 41, 2337.

    3. [3]

      (3) Gassa, L. M.; Ribotta, S. B.; Folquer, M. E.; Vilche, J. R. Corrosion 1998, 54, 179.

    4. [4]

      (4) Zucchi, F.; Grassi, V.; Frignani, A.; Trabanelli, G. Corrosion Sci. 2004, 46, 2853.

    5. [5]

      (5) Walker, R. Corrosion 1973, 29, 290.

    6. [6]

      (6) Walker, R. Corrosion 1975, 31, 97.

    7. [7]

      (7) Kuron, D.; Rother, H. J.; Graefen, H. Werkst. Korros. 1981, 32, 409.

    8. [8]

      (8) Zhao, Y. S.; Pang, Z. Z. Acta Phys. -Chim. Sin. 2003, 19, 419.

    9. [9]

      [赵永生, 庞正智, 物理化学学报, 2003, 19, 419.]

    10. [10]

      (9) Wang, X. Q.; Liu, R. Q.; Zhu, L. Q.; ng, J. W. Acta Phys. -Chim. Sin. 2007, 23, 21.

    11. [11]

      [王献群, 刘瑞泉, 朱丽琴, 宫建伟. 物理化学学报, 2007, 23, 21.]

    12. [12]

      (10) Scendo, M.; Poddebniak, D.; Malyszko, J. J. Appl. Electrochem. 2003, 33, 287.

    13. [13]

      (11) Quraishi, M. A.; Ansari, F. A. J. Appl. Electrochem. 2006, 36, 309.

    14. [14]

      (12) Quraishi, M. A.; Rafiquee, M. Z. A.; Saxena, N.; Khan, S. J. Corrosion Sci. Eng. 2006, 10.

    15. [15]

      (13) El Rehim, S. S. A.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2003, 78, 337.

    16. [16]

      (14) Bentiss, F.; Traisnel, M.; Chaibi, N.; Mernari, B.; Vezin, H.; Lagrenee, M. Corrosion Sci. 2002, 44, 2271.

    17. [17]

      (15) Lebrini, M.; Lagrenee, M.; Vezin, H.; Gengembre, L.; Bentiss, F. Corrosion Sci. 2005, 47, 485.

    18. [18]

      (16) Li, S. L.; Wang, Y. G.; Chen, S. H.; Yu, R.; Lei, S. B.; Ma, H. Y.; Liu, D. X. Corrosion Sci. 1999, 41, 1769.

    19. [19]

      (17) Scendo, M. Corrosion Sci. 2008, 50, 2070.

    20. [20]

      (18) Stupnišek-Lisac, E.; Gazivoda, A.; Modzarac, M. Electrochim. Acta 2002, 47, 4189.

    21. [21]

      (19) Scendo, M. Corrosion Sci. 2007, 49, 2985.

    22. [22]

      (20) El-Maksoud, S. A. A. Electrochim. Acta 2004, 49, 4205.

    23. [23]

      (21) Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Aust. J. Chem., 2004, 57, 113.

    24. [24]

      (22) Earle, M. J.; Seddon, K. R. Ionic Liquids: Green Solvents for the Future; Pure Appl. Chem. ACS Publications: Washington, DC, 2000.

    25. [25]

      (23) Ashassi-Sorkhabi, H.; Eshaghi, M. Mater. Chem. Phys. 2009, 114, 267.

    26. [26]

      (24) Likhanova, N. V.; Dominguez-Aguilar, M. A.; Olivares-Xometl, O.; Nava-Entzana, N.; Arce, E.; Dorantes, H. Corrosion Sci. 2010, 52, 2088.

    27. [27]

      (25) Zhang, Q. B.; Hua, Y. X. Electrochim. Acta 2009, 54, 1881.

    28. [28]

      (26) Zhang, Q. B.; Hua, Y. X. Mater. Chem. Phys. 2010, 119, 57.

    29. [29]

      (27) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2009, 39, 261.

    30. [30]

      (28) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2009, 39, 1185.

    31. [31]

      (29) Bentiss, F.; Lagrenee, M.; Traisnel, M.; Mernari, B.; Elattari, H. J. Hetrocycl. Chem. 1999, 36, 149.

    32. [32]

      (30) Tripathy, B. C.; Das, S. C.; Singh, P.; Hefter, G. T.; Misra, V. N. J. Electroanal. Chem. 2004, 565, 49.

    33. [33]

      (31) Stupnisek-Lisac, E.; Podbrscek, S.; Soric, T. J. Appl. Electrochem. 1994, 24, 779.

    34. [34]

      (32) ncalves, R. S.; Azambuja, D. S.; Lucho, A. M. S. Corrosion Sci. 2002, 44, 467.

    35. [35]

      (33) Popova, A.; Raicheva, S.; Sokolova, E.; Christov, M. Langmuir 1996, 12, 2083.

    36. [36]

      (34) Hsu, C. H.; Mansfeld, F. Corrosion 2001, 57, 747.

    37. [37]

      (35) Oquzie, E. E.; Li, Y.; Wang, F. H. J. Colloid Interface Sci. 2007, 310, 90.

    38. [38]

      (36) Khaled, K. F.; Hackerman, N. Electrochim. Acta 2004, 49, 485.

    39. [39]

      (37) Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M. Corrosion Sci. 2009, 51, 1073.

    40. [40]

      (38) Hosseini, M.; Mertens, S. F. L.; Ghorbani, M.; Arshadi, M. R. Mater. Chem. Phys. 2003, 78, 800.

    41. [41]

      (39) Elkadi, L.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrenee, M. Corrosion Sci. 2000, 42, 703.

    42. [42]

      (40) Yan, Y.; Li, W. H.; Cai, L. K.; Hou, B. R. Electrochim. Acta 2008, 53, 5953.

    43. [43]

      (41) Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Appl. Surf. Sci. 2005, 239, 154.

    44. [44]

      (42) Hermas, A. A.; Morad, M. S.;Wahdan, M. H. J. Appl. Electrochem. 2004, 34, 95.

    45. [45]

      (43) Abd El Rehim, S. S.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2001, 70, 64.

    46. [46]

      (44) Saleh, M. M. Mater. Chem. Phys. 2006, 98, 83.

    47. [47]

      (45) Saleh, M. R.; Din, A. M. S. E. Corrosion Sci. 1972, 12, 689.

    48. [48]

      (46) Maayta, A. K.; Al-Rawashdeh, N. A. F. Corrosion Sci. 2004, 46, 1129.

    49. [49]

      (47) Lagrenée, B. M.; Bouanisb, M. M.; Traisnelc, M.; Bentiss, F. Corrosion Sci. 2002, 44, 573.

    50. [50]

      (48) Cases, J. M.; Villieras, F. Langmuir 1992, 8, 1251.

    51. [51]

      (49) Abiola, O. K.; Oforka, N. C. Mater. Chem. Phys. 2004, 83, 315.

    52. [52]

      (50) mma, G. K.; Wahdan, M. H. Mater. Chem. Phys. 1995, 39, 209.

    53. [53]

      (51) Smyrl, W. H.; Bockris, J. O. M.; Conway, B. E.; Yeager, E.; White, R. E. Comprehensive Treatise of Electrochemistry; Plenum Press: New York, 1981, Vol. 4.

    54. [54]

      (52) Ma, H. Y.; Chen, S. H.; Yin, B. S.; Zhao, S. Y.; Liu, X. Q. Corrosion Sci. 2003, 45, 867.

    55. [55]

      (53) Quraishi, M. A.; Rafiquee, M. Z. A.; Khan, S.; Saxena, N. J. Appl. Electrochem. 2007, 37, 1153.


  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    8. [8]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    9. [9]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(1356)
  • Abstract views(2955)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return