Citation:
ZHANG Qi-Bo, HUA Yi-Xin. Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution[J]. Acta Physico-Chimica Sinica,
;2011, 27(03): 655-663.
doi:
10.3866/PKU.WHXB20110339
-
The effects of three newly synthesized alkylimidazolium based ionic liquids: 1-butyl-3- methylimidazolium hydrogen sulfate ([BMIM]HSO4), 1-hexyl-3-methylimidazolium hydrogen sulfate ([HMIM]HSO4), and 1-octyl-3-methylimidazolium hydrogen sulfate ([OMIM]HSO4), on the corrosion inhibition of copper in 0.5 mol·L-1 H2SO4 solution were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. All the measurements show that these alkylimidazolium ionic liquids are excellent inhibitors for copper in sulfuric acid media and the effectiveness of these inhibitors decreases as follows: [OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4 at the same concentration. Potentiodynamic polarization studies indicate that the three inhibitors are mixed type inhibitors and that both the cathodic and anodic processes of copper corrosion are suppressed. The electrochemical impedance results were evaluated using an equivalent circuit in which two constant phase elements (CPE) were offered for these systems with two time constants. Changes in impedance parameters (charge transfer resistance and double layer capacitance) with the addition of the inhibitors also suggest that these imidazolium based molecules act by adsorbing at the copper/solution interface. The adsorption of these imidazolium based compounds on the copper surface in an acidic solution is found to fit the Langmuir adsorption isotherm. Thermodynamic calculations reveal that the adsorption of inhibitors on the metal surface occurs by a physisorption-based mechanism involving a spontaneous process.
-
-
-
[1]
(1) Tavakoli, H.; Shahrabi, T.; Hosseini, M. G. Mater. Chem. Phys. 2008, 109, 281.
-
[2]
(2) Elmorsi, M. A.; Hassanein, A. M. Corrosion Sci. 1999, 41, 2337.
-
[3]
(3) Gassa, L. M.; Ribotta, S. B.; Folquer, M. E.; Vilche, J. R. Corrosion 1998, 54, 179.
-
[4]
(4) Zucchi, F.; Grassi, V.; Frignani, A.; Trabanelli, G. Corrosion Sci. 2004, 46, 2853.
-
[5]
(5) Walker, R. Corrosion 1973, 29, 290.
-
[6]
(6) Walker, R. Corrosion 1975, 31, 97.
-
[7]
(7) Kuron, D.; Rother, H. J.; Graefen, H. Werkst. Korros. 1981, 32, 409.
-
[8]
(8) Zhao, Y. S.; Pang, Z. Z. Acta Phys. -Chim. Sin. 2003, 19, 419.
-
[9]
[赵永生, 庞正智, 物理化学学报, 2003, 19, 419.]
-
[10]
(9) Wang, X. Q.; Liu, R. Q.; Zhu, L. Q.; ng, J. W. Acta Phys. -Chim. Sin. 2007, 23, 21.
-
[11]
[王献群, 刘瑞泉, 朱丽琴, 宫建伟. 物理化学学报, 2007, 23, 21.]
-
[12]
(10) Scendo, M.; Poddebniak, D.; Malyszko, J. J. Appl. Electrochem. 2003, 33, 287.
-
[13]
(11) Quraishi, M. A.; Ansari, F. A. J. Appl. Electrochem. 2006, 36, 309.
-
[14]
(12) Quraishi, M. A.; Rafiquee, M. Z. A.; Saxena, N.; Khan, S. J. Corrosion Sci. Eng. 2006, 10.
-
[15]
(13) El Rehim, S. S. A.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2003, 78, 337.
-
[16]
(14) Bentiss, F.; Traisnel, M.; Chaibi, N.; Mernari, B.; Vezin, H.; Lagrenee, M. Corrosion Sci. 2002, 44, 2271.
-
[17]
(15) Lebrini, M.; Lagrenee, M.; Vezin, H.; Gengembre, L.; Bentiss, F. Corrosion Sci. 2005, 47, 485.
-
[18]
(16) Li, S. L.; Wang, Y. G.; Chen, S. H.; Yu, R.; Lei, S. B.; Ma, H. Y.; Liu, D. X. Corrosion Sci. 1999, 41, 1769.
-
[19]
(17) Scendo, M. Corrosion Sci. 2008, 50, 2070.
-
[20]
(18) Stupnišek-Lisac, E.; Gazivoda, A.; Modzarac, M. Electrochim. Acta 2002, 47, 4189.
-
[21]
(19) Scendo, M. Corrosion Sci. 2007, 49, 2985.
-
[22]
(20) El-Maksoud, S. A. A. Electrochim. Acta 2004, 49, 4205.
-
[23]
(21) Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Aust. J. Chem., 2004, 57, 113.
-
[24]
(22) Earle, M. J.; Seddon, K. R. Ionic Liquids: Green Solvents for the Future; Pure Appl. Chem. ACS Publications: Washington, DC, 2000.
-
[25]
(23) Ashassi-Sorkhabi, H.; Eshaghi, M. Mater. Chem. Phys. 2009, 114, 267.
-
[26]
(24) Likhanova, N. V.; Dominguez-Aguilar, M. A.; Olivares-Xometl, O.; Nava-Entzana, N.; Arce, E.; Dorantes, H. Corrosion Sci. 2010, 52, 2088.
-
[27]
(25) Zhang, Q. B.; Hua, Y. X. Electrochim. Acta 2009, 54, 1881.
-
[28]
(26) Zhang, Q. B.; Hua, Y. X. Mater. Chem. Phys. 2010, 119, 57.
-
[29]
(27) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2009, 39, 261.
-
[30]
(28) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2009, 39, 1185.
-
[31]
(29) Bentiss, F.; Lagrenee, M.; Traisnel, M.; Mernari, B.; Elattari, H. J. Hetrocycl. Chem. 1999, 36, 149.
-
[32]
(30) Tripathy, B. C.; Das, S. C.; Singh, P.; Hefter, G. T.; Misra, V. N. J. Electroanal. Chem. 2004, 565, 49.
-
[33]
(31) Stupnisek-Lisac, E.; Podbrscek, S.; Soric, T. J. Appl. Electrochem. 1994, 24, 779.
-
[34]
(32) ncalves, R. S.; Azambuja, D. S.; Lucho, A. M. S. Corrosion Sci. 2002, 44, 467.
-
[35]
(33) Popova, A.; Raicheva, S.; Sokolova, E.; Christov, M. Langmuir 1996, 12, 2083.
-
[36]
(34) Hsu, C. H.; Mansfeld, F. Corrosion 2001, 57, 747.
-
[37]
(35) Oquzie, E. E.; Li, Y.; Wang, F. H. J. Colloid Interface Sci. 2007, 310, 90.
-
[38]
(36) Khaled, K. F.; Hackerman, N. Electrochim. Acta 2004, 49, 485.
-
[39]
(37) Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M. Corrosion Sci. 2009, 51, 1073.
-
[40]
(38) Hosseini, M.; Mertens, S. F. L.; Ghorbani, M.; Arshadi, M. R. Mater. Chem. Phys. 2003, 78, 800.
-
[41]
(39) Elkadi, L.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrenee, M. Corrosion Sci. 2000, 42, 703.
-
[42]
(40) Yan, Y.; Li, W. H.; Cai, L. K.; Hou, B. R. Electrochim. Acta 2008, 53, 5953.
-
[43]
(41) Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Appl. Surf. Sci. 2005, 239, 154.
-
[44]
(42) Hermas, A. A.; Morad, M. S.;Wahdan, M. H. J. Appl. Electrochem. 2004, 34, 95.
-
[45]
(43) Abd El Rehim, S. S.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2001, 70, 64.
-
[46]
(44) Saleh, M. M. Mater. Chem. Phys. 2006, 98, 83.
-
[47]
(45) Saleh, M. R.; Din, A. M. S. E. Corrosion Sci. 1972, 12, 689.
-
[48]
(46) Maayta, A. K.; Al-Rawashdeh, N. A. F. Corrosion Sci. 2004, 46, 1129.
-
[49]
(47) Lagrenée, B. M.; Bouanisb, M. M.; Traisnelc, M.; Bentiss, F. Corrosion Sci. 2002, 44, 573.
-
[50]
(48) Cases, J. M.; Villieras, F. Langmuir 1992, 8, 1251.
-
[51]
(49) Abiola, O. K.; Oforka, N. C. Mater. Chem. Phys. 2004, 83, 315.
-
[52]
(50) mma, G. K.; Wahdan, M. H. Mater. Chem. Phys. 1995, 39, 209.
-
[53]
(51) Smyrl, W. H.; Bockris, J. O. M.; Conway, B. E.; Yeager, E.; White, R. E. Comprehensive Treatise of Electrochemistry; Plenum Press: New York, 1981, Vol. 4.
-
[54]
(52) Ma, H. Y.; Chen, S. H.; Yin, B. S.; Zhao, S. Y.; Liu, X. Q. Corrosion Sci. 2003, 45, 867.
-
[55]
(53) Quraishi, M. A.; Rafiquee, M. Z. A.; Khan, S.; Saxena, N. J. Appl. Electrochem. 2007, 37, 1153.
-
[1]
-
-
-
[1]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[2]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[3]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[4]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[5]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[6]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[7]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[8]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[9]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[10]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[11]
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
-
[12]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[13]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[16]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[17]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[18]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[19]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[20]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[1]
Metrics
- PDF Downloads(1356)
- Abstract views(3029)
- HTML views(25)