Citation: AN Xiao-Ying, HE Rong-Xing, HUANG Cheng, LI Ming. Mechanism of AuCl3-Catalyzed Synthesis of Highly Substituted Furans Based on 2-(1-Alkynyl)-2-alken-1-ones[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 577-583. doi: 10.3866/PKU.WHXB20110338 shu

Mechanism of AuCl3-Catalyzed Synthesis of Highly Substituted Furans Based on 2-(1-Alkynyl)-2-alken-1-ones

  • Received Date: 17 October 2010
    Available Online: 21 February 2011

    Fund Project: 教育部科学技术重点项目(104263)资助 (104263)

  • We investigated the mechanism of the AuCl3-catalyzed synthesis of highly substituted furans from 2-(1-alkynyl)-2-alken-1-ones with nucleophiles using the density functional theory (DFT) with B3LYP function, and obtained the optimal pathway. The rate-determining step of the cyclization is H-migration from the hydroxy group to a ligand Cl of AuCl3 with a 49.3 kJ·mol-1 energy barrier. The calculated results show that the ligand Cl of AuCl3 plays an important role in the reaction, which stabilizes the catalyst and is also directly involved in the reaction. The active energy of proton transfer decreases from 71.5 to 49.3 kJ·mol-1 by assisting the proton transfer. In addition, the reason why HBF4 cannot catalyze the cyclization of 2-(1-alkynyl)-2-alken-1-ones is also discussed in this work. The theoretical results are consistent with the experimental observations.

  • 加载中
    1. [1]

      (1) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. Tetrahedron 1998, 54, 1955.

    2. [2]

      (2) Keay, B. A. Chem. Soc. Rev. 1999, 28, 209.

    3. [3]

      (3) Hou, X. L.; Yang, Z.; Wong, H. N. C. Progress in Heterocyclic Chemistry (Vol. 14); Pergamon: Oxford, 2002; pp 139-179.

    4. [4]

      (4) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.

    5. [5]

      (5) Shipman, M. Contemp. Org. Synth. 1995, 2, 1.

    6. [6]

      (6) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500.

    7. [7]

      (7) Alexander, V. K.; Vladimir, G. J. Org. Chem. 2002, 67, 95.

    8. [8]

      (8) Gabriele, B.; Giuseppe, S.; Egidio, L. J. Org. Chem. 1999, 64, 7687.

    9. [9]

      (9) Shu, X. Z.; Liu, X. Y.; Xiao, H. Q.; Ji, K.G.; Guo, L. N.; Qi, C. Z.; Liang, Y. M. Adv. Synth. Catal. 2007, 349, 2493.

    10. [10]

      (10) Fang, R.; Su, C. Y.; Zhao, C. Y.; Phillips, D. L. Organometallics 2009, 28, 741.

    11. [11]

      (11) Zhang, J. S.; Shen, W.; Li, L. Q.; Li, M. Organometallics 2009, 28, 3129.

    12. [12]

      (12) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.

    13. [13]

      (13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    14. [14]

      (14) Miertus, S.; Tomasi. J. Chem. Phys. 1982, 65, 239.

    15. [15]

      (15) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    16. [16]

      (16) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; et al. NBO 5.0; Theoretical Chemistry Institute: University of Wisconsin, Madison, WI, 2001.

    17. [17]

      (17) Biegler-K?nig, F.; Sch?nbohm, J.; Derdau. R.; et al. AIM 2000, Version 2.0; McMaster University, 2002.

    18. [18]

      (18) Norberg, D.; Larsson., P. E.; Salhi-Benachenhou, N. J. Phys. Chem. A 2008, 112, 4694

    19. [19]

      (19) Benfatti, F.; Bottoni, A.; Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Stenta, M.; Tolomelli, A. Adv. Synth. Catal. 2008, 350, 2261.

    20. [20]

      (20) Wasserman, H. H.; Fukuyama, J. M. Tetrahedron Letters 1991, 32, 7127.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

Metrics
  • PDF Downloads(1128)
  • Abstract views(3442)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return