Citation: YUAN Shuai, ZHANG Wen-Ying, LI An-Yang, ZHU Yi-Min, DOU Yu-Sheng. Dynamics Simulation of a New Deactivation Pathway for Stacked Adenines[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 825-830. doi: 10.3866/PKU.WHXB20110337 shu

Dynamics Simulation of a New Deactivation Pathway for Stacked Adenines

  • Received Date: 8 December 2010
    Available Online: 18 February 2011

    Fund Project: 国家自然科学基金(20773168, 21073242) (20773168, 21073242)重庆邮电大学博士启动基金(A2009-63)资助项目 (A2009-63)

  • A semiclassical dynamics simulation study was undertaken to investigate the deactivation of the lowest excited state of π-stacked adenines, as induced by a laser pulse. Only one of the adenines was subjected to a laser pulse in this simulation. The simulation results show that the interaction between the excited adenines (A) and their unexcited neighbors (A′) increases significantly, followed by a shortening of the intermolecular distance. The interbases interaction leads to a new deactivated pathway in which atom C2 in molecule A and atom C2′ in molecule A′ are link to each other and form a “bonded excimer” intermediate. The lifetime of the “bonded excimer” intermediate is about 390 fs. The deformation of the pyrimidine ring at the C2 atom and the displacement of the H2′ atom away from the pyrimidine ring play a significant role in the deactivation process of the “bonded excimer” intermediate. After deactivation, the C2-C2′ dissociates and the released bond energy converts to molecular kinetic energy. Both adenine molecules return to the planar geometries of their ground states.

  • 加载中
    1. [1]

      (1) Taylor, J. S. Accounts Chem. Res. 1994, 27, 76.

    2. [2]

      (2) Vink, A. A.; Roza, L. J. Photochem. Photobiol. B 2001, 65, 101.

    3. [3]

      (3) Beukers, R.; Eker, A.; Lohman, P. DNA Repair 2008, 7, 530.

    4. [4]

      (4) Roca-Sanjuán, D.; Olaso- nzález, G.; nzález-Ramírez, I.; Serrano-Andrés, L.; Merchán, M. J. Am. Chem. Soc. 2008, 130, 10768.

    5. [5]

      (5) Crespo-Hernández, C.; Cohen, B.; Hare, P.; Kohler, B. Chem. Rev. 2004, 104, 1977.

    6. [6]

      (6) Shukla, M.; Leszczynski, J. J. Biomol. Struct. Dyn. 2007, 25, 93.

    7. [7]

      (7) Saigusa, H. J. Photochem.Photobiol. C 2006, 7, 197.

    8. [8]

      (8) de Vries, M.; Hobza, P. Annu. Rev. Phys. Chem. 2007, 58, 585.

    9. [9]

      (9) Liang, X. J.; Cui, L.; Wu, D. Y.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2009, 25, 1605.

    10. [10]

      [梁晓静, 崔 丽, 吴德印, 田中群. 物理化学学报, 2009, 25, 1605.]

    11. [11]

      (10) Weng, K. F.; Wang, H. G.; Zhu, X. M.; Zheng, X. M. Acta Phys. -Chim. Sin. 2009, 25, 1799.

    12. [12]

      [翁克凤, 王惠钢, 祝新明, 郑旭明. 物理化学学报, 2009, 25, 1799.]

    13. [13]

      (11) Daniels, M.; Hauswirth, W. Science 1971, 171, 675.

    14. [14]

      (12) Vigny, P. Acad. Sci. Ser. D 1971, 272, 3206.

    15. [15]

      (13) Pecourt, J. M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348.

    16. [16]

      (14) Ismail, N.; Blancafort, L.; Olivucci, M.; Kohler, B.; Robb, M. J. Am. Chem. Soc. 2002, 124, 6818.

    17. [17]

      (15) Zgierski, M. Z.; Patchkovskii, S.; Fujiwara, T.; Lim, E. C. Chem. Phys. Lett. 2007, 440, 145.

    18. [18]

      (16) Serrano-Andrés, L.; Merchán, M.; Borin, A. C. Chem. Eur. J. 2006, 12, 6559.

    19. [19]

      (17) Lei, Y. B.; Yuan, S.; Dou, Y. S.; Wang, Y. B.; Wen, Z. Y. J. Phys. Chem. A, 2008, 112, 8497.

    20. [20]

      (18) Crespo-Hernández, C.; Kohler, B. Nature 2005, 436, 1141.

    21. [21]

      (19) Middleton, T.; de La Harpe, K.; Charlene, S.; Law, Y. K.; Crespo-Hernández, C.; Kohler, B. Annu. Rev. Phys. Chem. 2009, 60, 217.

    22. [22]

      (20) Wang, Y. S.; Haze, O.; Dinnocenzo, J.; Farid, S.; Farid, R.; uld, I. J. Org. Chem. 2007, 72, 6970.

    23. [23]

      (21) Ben-Nun, M.; Martínez, T. J. Adv. Chem. Phys. 2002, 124, 439.

    24. [24]

      (22) Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1992, 114, 1606.

    25. [25]

      (23) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513.

    26. [26]

      (24) Dou, Y. S.; Torralva, B.; Allen, R. J. Mod. Optics. 2003, 50, 2615.

    27. [27]

      (25) Dou, Y. S.; Torralva, B.; Allen, R. Chem. Phys. Lett. 1998, 378, 323.

    28. [28]

      (26) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 49.

    29. [29]

      (27) Dou, Y. S.; Lei, Y. B.; Wen, Z. Y.;Wang, Y. B.; Lo, G.; Allen, R. Appl. Surf. Sci. 2007, 253, 6400.

    30. [30]

      (28) Dou, Y. S.; Lei, Y. B.; Li, A. Y.; Wen, Z. Y.; Torralva, B.; Lo, G.; Allen, R. J. Phys. Chem. A 2007, 111, 1133.

    31. [31]

      (29) Yuan, S.; Dou, Y. S.; Wu, W. F.; Hu, Y.; Zhao, J. S. J. Phys. Chem. A 2008, 112, 13326.

    32. [32]

      (30) Yuan, S.; Wu, W. F.; Dou, Y. S.; Zhao, J. S. Chin. Chem. Lett. 2008, 19, 1379.

    33. [33]

      (31) Dou, Y. S.; Hu, Y.; Yuan, S.; Wu, W. F.; Tang, H. Mol. Phys. 2009, 107, 181.

    34. [34]

      (32) Yuan, S.; Wu, W. F.; Wen, Z. Y.; Shu, K. X.; Tang, H.; Dou, Y. S.; Lo, G. Mol. Phys. 2010, 108, 3431.

    35. [35]

      (33) Dou, Y. S.; Yuan, S.; Lo, G. V. Appl. Surf. Sci. 2007, 253, 6404.

    36. [36]

      (34) Li, A. Y.; Yuan, S.; Dou, Y. S.; Wang, Y. B.; Wen, Z. Y. Chem. Phys. Lett. 2009, 478, 28.

    37. [37]

      (35) Zhang, W. Y.; Yuan, S.; Li, A. Y.; Dou, Y. S.; Zhao, J. S.; Fang, W. H. J. Phys. Chem. C 2010, 114, 5594.

    38. [38]

      (36) Dou, Y. S.; Xiong, S. S.; Wu, W. F.; Yuan, S.; Tang, H. J. Photochem. Photobiol. B 2010, 101, 31.

    39. [39]

      (37) Perun, S.; Sobolewski, A. L.; Domcke, W. J. Am. Chem. Soc. 2005, 127, 6257.


  • 加载中
    1. [1]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    17. [17]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    18. [18]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    19. [19]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(1016)
  • Abstract views(2154)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return