Citation: DONG Ze-Hua, ZHU Tao, SHI Wei, GUO Xing-Peng. Inhibition of Ethyleneamine on the Pitting Corrosion of Rebar in a Synthetic Carbonated Concrete Pore Solution[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 905-912. doi: 10.3866/PKU.WHXB20110336 shu

Inhibition of Ethyleneamine on the Pitting Corrosion of Rebar in a Synthetic Carbonated Concrete Pore Solution

  • Received Date: 26 September 2010
    Available Online: 18 February 2011

    Fund Project: 国家自然科学基金(50971064)资助项目 (50971064)

  • Tetraethylenepentamine (TEPA) was surveyed to show strong inhibition on pitting corrosion of Q345B carbon steel in a carbonated synthetic pore solution (SPS) by electrochemical noise (ECN), electrochemical impedance spectroscopy (EIS), and polarization curves. The pitting corrosion potential shifts positively with an increase in the TEPA concentration. ECN data show that the low content of TEPA can increase the nucleation rate of the metastable pits slightly and can effectively reduce their lifespan. The high content (0.10 mol·L-1) of TEPA accelerates the repassivation of metastable pitting and this is accompanied by an increase in noise resistance and a decrease in the nucleation rate and average pitting charge until the noise current transients disappear completely. Both the baseline current and the amplitude of the current transients decrease with an increase in the TEPA concentration, indicating that TEPA retards not only the pitting corrosion but also the general dissolution of the passive film. Micrographs show that the metastable pits mainly initiate and develop around the stable pits because of the induction of corrosion products, which causes the pitting cavity on carbon steel to grow generally in a planar rather than in a perpendicular direction.

  • 加载中
    1. [1]

      (1) Xu, Y. M. Journal of the Chinese Ceramic Society 2002, 30, 94.

    2. [2]

      [徐永模. 硅酸盐学报 2002, 30, 94.]

    3. [3]

      (2) Hausmann, D. A. Mater. Perform. 1998, 37, 64.

    4. [4]

      (3) Soylev, T. A.; Francois, R. Cem. Concr. Res. 2003, 33, 1407.

    5. [5]

      (4) nzález, J. A.; Andrade, C.; Alonso, C.; Feliu, S. Cem. Concr. Res. 1995, 25, 257.

    6. [6]

      (5) Ilevbare, G. O.; Burstein, G. T. Corrosion Sci. 2003, 45, 1545.

    7. [7]

      (6) El Aal, E. E. A.; El Wanees, S. A.; Diab, A.; El Haleem, S. M. A. Corrosion Sci. 2009, 51, 1611.

    8. [8]

      (7) Jamil, H. E.; Montemor, M. F.; Boulif, R.; Shriri, A.; Ferreira, M. G. S. Electrochim. Acta 2003, 48, 3509.

    9. [9]

      (8) Benzina Mechmeche, L.; Dhouibi, L.; Ben Ouezdou, M.; Triki, E.; Zucchi, F. Cem. Concr. Compos. 2008, 30, 167.

    10. [10]

      (9) Selev, T. A.; Richardson, M. G. Construction and Building Materials 2008, 22, 609.

    11. [11]

      (10) Zhao, B.; Li, J. H.; Hu, R. G.; Du, R. G.; Lin, C. J. Electrochim. Acta 2007, 52, 3976.

    12. [12]

      (11) Jamil, H. E.; Shriri, A.; Boulif, R.; Montemor, M. F.; Ferreira, M. G. S. Cem. Concr. Compos. 2005, 27, 671.

    13. [13]

      (12) Valcarce, M. B.; Vazquez, M. Mater. Chem. Phys. 2009, 115, 313.

    14. [14]

      (13) Dong, Z. H.; Guo, X. P.; Zheng, J. X.; Xu, L. M. J. Appl. Electrochem. 2002, 32, 395.

    15. [15]

      (14) Valcarce, M. B.; Vazquez, M. Electrochim. Acta 2008, 53, 5007.

    16. [16]

      (15) Sawada, S.; Kubo, J.; Page, C. L.; Page, M. M. Corrosion Sci. 2007, 49, 1186.

    17. [17]

      (16) Dong, Z.; Guo, X. P.; Zheng, J. R.; Xu, L. M. Journal of Chinese Society for Corrosion and Protection 2002, 22, 290.

    18. [18]

      [董泽华, 郭兴蓬, 郑家燊, 许立铭. 中国腐蚀与防护学报, 2002, 22, 290.]

    19. [19]

      (17) Cheng, Y. F.; Yang, C.; Luo, J. L. Thin Solid Films 2002, 416, 169.

    20. [20]

      (18) Macdonald, D. D.; Al Rifaie, M.; Engelhardt, G. R. J. Electrochem. Soc. 2001, 148, B343.

    21. [21]

      (19) Cheng, Y. F.; Luo, J. L. Br. Corros. J. 2000, 35, 125.

    22. [22]

      (20) Okada, T. Corrosion Sci. 1990, 31, 453.

    23. [23]

      (21) nzález, J. A.; Miranda, J. M.; Otero, E.; Feliu, S. Corrosion Sci. 2007, 49, 436.

    24. [24]

      (22) Chen, J. F.; Bogaerts, W. F. Corrosion Sci. 1995, 37, 1839.

    25. [25]

      (23) Mansfeld, F.; Sun, Z.; Hsu, C. H.; Nagiub, A. Corrosion Sci. 2001, 43, 341.

    26. [26]

      (24) Lowe, A.; Eren, H.; Tan, Y. J.; Kinsella, B.; Bailey, S. IEEE Trans. Instrum. Meas. 2001, 50, 1059.

    27. [27]

      (25) Tang, Y.; Zuo, Y.; Zhao, H. Appl. Surf. Sci. 2005, 243, 82.

    28. [28]

      (26) Zhang, D. Q.; Cai, Q. R.; He, X. M.; Gao, L. X.; Kim, G. S. Mater. Chem. Phys. 2009, 114, 612.

    29. [29]

      (27) Trabanelli, G.; Monticelli, C.; Grassi, V.; Frignani, A. Cem. Concr. Res. 2005, 35, 1804.

    30. [30]

      (28) Shi, M.; Chen, Z.; Sun, J. Cem. Concr. Res. 1999, 29, 1111.


  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    3. [3]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    6. [6]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    7. [7]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(1065)
  • Abstract views(2394)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return