Citation: ZHANG Qing-Feng, ZHENG Zhao-Lei, HE Zu-Wei, WANG Ying. Reduced Chemical Kinetic Model of Toluene Reference Fuels for HCCI Combustion[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 530-538. doi: 10.3866/PKU.WHXB20110334 shu

Reduced Chemical Kinetic Model of Toluene Reference Fuels for HCCI Combustion

  • Received Date: 5 September 2010
    Available Online: 18 February 2011

    Fund Project: 国家自然科学基金(51006128)资助项目 (51006128)

  • We developed a reduced kinetic model for toluene reference fuel (TRF) including 70 species and 196 reactions for homogeneous charge compression ignition (HCCI) combustion. The low temperature reaction scheme for the TRF was based on the existing low-temperature reaction mechanism developed by Tanaka for primary reference fuel (PRF) oxidation. We added skeletal reactions for PRF oxidation to a reduced toluene sub-mechanism. The high-temperature reaction mechanism was mainly from the previous work of Patel and an important TRF reaction [H+O2+M=O+OH+M] was added. Validation of the ignition delay time was performed for single-component, two-component and three-component fuels and the results were satisfactory for HCCI engine conditions. A comparison of various experimental data available in the literature, including shock tube tests and HCCI engine experiments, shows that the present TRF mechanism performs well. A sensitivity analysis at the moment of maximum heat production shows that the reaction of phenol radicals (C6H<5) with O2 is more sensitive as the pressure increases. Formaldehyde (HCHO) is a very important intermediate species and should not be neglected.

  • 加载中
    1. [1]

      (1) Yao, M. F.; Zheng, Z. L.; Liu, H. F. Prog. Energ. Combust. 2009, 35, 398.

    2. [2]

      (2) Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1563.

    3. [3]

      (3) Tanaka, S.; Ayala, F.; Keck, J. C. Combust. Flame 2003, 134, 219.

    4. [4]

      (4) Sivaramakrishnan, R.; Tranter, R. S.; Brezinsky, K. Proc. Combust. Inst. 2005, 30, 1165.

    5. [5]

      (5) Pitz, W. J.; Cernansky, N. P.; Dryer, F.L.; E lfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Tech. Pap. Ser. 2007, 2007-01-0175.

    6. [6]

      (6) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 1998, 114, 149.

    7. [7]

      (7) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2002, 129, 253.

    8. [8]

      (8) Chaos, M.; Zhao, Z.; Kazakov, A.; kulakrishnan, P.; Angioletti, M.; Dryer, F.L. A PRF+Toluene Surrogate Fuel Model for Simulating Gasoline Kinetics. In 5th U.S. Combustion Meeting, March 25-28, 2007, University of California, San Die , California. Paper # E26.

    9. [9]

      (9) Andrae, J. C. G.; Björnbom, P.; Cracknell, R. F.; Kalghatgi, G. T. Combust. Flame 2007, 149, 2.

    10. [10]

      (10) Andrae, J. C. G.; Brinck, T.; Kalghatgi, G. T. Combust. Flame 2008, 155, 696.

    11. [11]

      (11) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz, W. J. Proc. Combust. Inst. 2009, 32, 411.

    12. [12]

      (12) Pitz, W. J.; Seiser, R.; Bozzelli, J. W.; Seshadri, K.; Chen, C. J.; Costa, D.; Fournet, R.; Billaud, F.; Battin-Leclerc, F.; Weatbrook, C. K. Chemical Kinetic Study of Toluene Oxidation. In 29th International Symposium on Combustion, Hokkaido University, Sapporo, Japan. July 21-26, 2002;Elsevier: New York. 2002. UCRL-JC-125890.

    13. [13]

      (13) Anderlohr, J. M.; Bounaceur, R.; Pires Da Cruz, A.; Battin-Leclerc, F. Combust. Flame 2009, 156, 505.

    14. [14]

      (14) Tsurushima, T. Proc. Combust. Inst. 2009, 32, 2835.

    15. [15]

      (15) Alzueta, M. U.; Glarborg, P.; Dam-johansen, K. Int. J. Chem. Kinet. 2000, 32, 498.

    16. [16]

      (16) Welcome to Chemical-Kinetic Mechanisms for Combustion Applications. Http://maeweb.ucsd.edu/~combustion/cermech/index.html (accessed Sep 27, 2010).

    17. [17]

      (17) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. Proc. Combust. Inst. 2007, 31, 211.

    18. [18]

      (18) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. J. Phys. Chem. A 2006, 110, 9867.

    19. [19]

      (19) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2006, 147, 195.

    20. [20]

      (20) Seta, T.; Nakajima, M.; Miyoshi, J. Phys. Chem. A 2006, 110, 5081.

    21. [21]

      (21) Silva, G.; Bozzelli, J. W. Proc. Combust. Inst. 2009, 32, 287.

    22. [22]

      (22) Davidson, D. F.; Gauthier, B. M.; Hanson, R. K. Proc. Combust. Inst. 2005, 30, 1175.

    23. [23]

      (23) Klotz, S. D.; Brezinsky, K.; Glassman, I. Modeling the Combustion of Toluene-Butane Blends. In 27th Symposium (International) on Combustion, University of Colorado at boulder, USA; The Combustion Institute: Pittsburgh, PA, 1998; 337.

    24. [24]

      (24) Patel, A.; Kong, S. C.; Reitz, R. D. SAE Tech. Pap. Ser. 2004, 2004-01-0558.

    25. [25]

      (25) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKIN Release 4.1, Reaction Design: San Die , CA, 2006.

    26. [26]

      (26) Fieweger, K.; Blumenthal, K. R.; Adomeit, G. Combust. Flame 1997, 109, 599.

    27. [27]

      (27) Ciezki, H. K.; Adomeit, G. Combust. Flame 1993, 93, 421.

    28. [28]

      (28) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300.

    29. [29]

      (29) Dec, J. E.; Sj?berg, M. SAE Tech. Pap. Ser. 2003, 2003-01-0752.

    30. [30]

      (30) Aroonsrisopon, T.; Sohm, V.; Werner, P.; Foster, D. E.; Morikawa, T.; Lida, M. SAE Tech. Pap. Ser. 2002, 2002-01-2830.


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    17. [17]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(1735)
  • Abstract views(3178)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return