Citation: ZHANG Qing-Feng, ZHENG Zhao-Lei, HE Zu-Wei, WANG Ying. Reduced Chemical Kinetic Model of Toluene Reference Fuels for HCCI Combustion[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 530-538. doi: 10.3866/PKU.WHXB20110334
-
We developed a reduced kinetic model for toluene reference fuel (TRF) including 70 species and 196 reactions for homogeneous charge compression ignition (HCCI) combustion. The low temperature reaction scheme for the TRF was based on the existing low-temperature reaction mechanism developed by Tanaka for primary reference fuel (PRF) oxidation. We added skeletal reactions for PRF oxidation to a reduced toluene sub-mechanism. The high-temperature reaction mechanism was mainly from the previous work of Patel and an important TRF reaction [H+O2+M=O+OH+M] was added. Validation of the ignition delay time was performed for single-component, two-component and three-component fuels and the results were satisfactory for HCCI engine conditions. A comparison of various experimental data available in the literature, including shock tube tests and HCCI engine experiments, shows that the present TRF mechanism performs well. A sensitivity analysis at the moment of maximum heat production shows that the reaction of phenol radicals (C6H<5) with O2 is more sensitive as the pressure increases. Formaldehyde (HCHO) is a very important intermediate species and should not be neglected.
-
-
[1]
(1) Yao, M. F.; Zheng, Z. L.; Liu, H. F. Prog. Energ. Combust. 2009, 35, 398.
-
[2]
(2) Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1563.
-
[3]
(3) Tanaka, S.; Ayala, F.; Keck, J. C. Combust. Flame 2003, 134, 219.
-
[4]
(4) Sivaramakrishnan, R.; Tranter, R. S.; Brezinsky, K. Proc. Combust. Inst. 2005, 30, 1165.
-
[5]
(5) Pitz, W. J.; Cernansky, N. P.; Dryer, F.L.; E lfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Tech. Pap. Ser. 2007, 2007-01-0175.
-
[6]
(6) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 1998, 114, 149.
-
[7]
(7) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2002, 129, 253.
-
[8]
(8) Chaos, M.; Zhao, Z.; Kazakov, A.; kulakrishnan, P.; Angioletti, M.; Dryer, F.L. A PRF+Toluene Surrogate Fuel Model for Simulating Gasoline Kinetics. In 5th U.S. Combustion Meeting, March 25-28, 2007, University of California, San Die , California. Paper # E26.
-
[9]
(9) Andrae, J. C. G.; Björnbom, P.; Cracknell, R. F.; Kalghatgi, G. T. Combust. Flame 2007, 149, 2.
-
[10]
(10) Andrae, J. C. G.; Brinck, T.; Kalghatgi, G. T. Combust. Flame 2008, 155, 696.
-
[11]
(11) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz, W. J. Proc. Combust. Inst. 2009, 32, 411.
-
[12]
(12) Pitz, W. J.; Seiser, R.; Bozzelli, J. W.; Seshadri, K.; Chen, C. J.; Costa, D.; Fournet, R.; Billaud, F.; Battin-Leclerc, F.; Weatbrook, C. K. Chemical Kinetic Study of Toluene Oxidation. In 29th International Symposium on Combustion, Hokkaido University, Sapporo, Japan. July 21-26, 2002;Elsevier: New York. 2002. UCRL-JC-125890.
-
[13]
(13) Anderlohr, J. M.; Bounaceur, R.; Pires Da Cruz, A.; Battin-Leclerc, F. Combust. Flame 2009, 156, 505.
-
[14]
(14) Tsurushima, T. Proc. Combust. Inst. 2009, 32, 2835.
-
[15]
(15) Alzueta, M. U.; Glarborg, P.; Dam-johansen, K. Int. J. Chem. Kinet. 2000, 32, 498.
-
[16]
(16) Welcome to Chemical-Kinetic Mechanisms for Combustion Applications. Http://maeweb.ucsd.edu/~combustion/cermech/index.html (accessed Sep 27, 2010).
-
[17]
(17) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. Proc. Combust. Inst. 2007, 31, 211.
-
[18]
(18) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. J. Phys. Chem. A 2006, 110, 9867.
-
[19]
(19) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2006, 147, 195.
-
[20]
(20) Seta, T.; Nakajima, M.; Miyoshi, J. Phys. Chem. A 2006, 110, 5081.
-
[21]
(21) Silva, G.; Bozzelli, J. W. Proc. Combust. Inst. 2009, 32, 287.
-
[22]
(22) Davidson, D. F.; Gauthier, B. M.; Hanson, R. K. Proc. Combust. Inst. 2005, 30, 1175.
-
[23]
(23) Klotz, S. D.; Brezinsky, K.; Glassman, I. Modeling the Combustion of Toluene-Butane Blends. In 27th Symposium (International) on Combustion, University of Colorado at boulder, USA; The Combustion Institute: Pittsburgh, PA, 1998; 337.
-
[24]
(24) Patel, A.; Kong, S. C.; Reitz, R. D. SAE Tech. Pap. Ser. 2004, 2004-01-0558.
-
[25]
(25) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKIN Release 4.1, Reaction Design: San Die , CA, 2006.
-
[26]
(26) Fieweger, K.; Blumenthal, K. R.; Adomeit, G. Combust. Flame 1997, 109, 599.
-
[27]
(27) Ciezki, H. K.; Adomeit, G. Combust. Flame 1993, 93, 421.
-
[28]
(28) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300.
-
[29]
(29) Dec, J. E.; Sj?berg, M. SAE Tech. Pap. Ser. 2003, 2003-01-0752.
-
[30]
(30) Aroonsrisopon, T.; Sohm, V.; Werner, P.; Foster, D. E.; Morikawa, T.; Lida, M. SAE Tech. Pap. Ser. 2002, 2002-01-2830.
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[5]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[6]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[7]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[8]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[9]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[10]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[11]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[12]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[13]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[14]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[15]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[16]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[17]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[18]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[19]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[20]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[1]
Metrics
- PDF Downloads(1735)
- Abstract views(3177)
- HTML views(20)