Citation: ZHANG Qing-Feng, ZHENG Zhao-Lei, HE Zu-Wei, WANG Ying. Reduced Chemical Kinetic Model of Toluene Reference Fuels for HCCI Combustion[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 530-538. doi: 10.3866/PKU.WHXB20110334 shu

Reduced Chemical Kinetic Model of Toluene Reference Fuels for HCCI Combustion

  • Received Date: 5 September 2010
    Available Online: 18 February 2011

    Fund Project: 国家自然科学基金(51006128)资助项目 (51006128)

  • We developed a reduced kinetic model for toluene reference fuel (TRF) including 70 species and 196 reactions for homogeneous charge compression ignition (HCCI) combustion. The low temperature reaction scheme for the TRF was based on the existing low-temperature reaction mechanism developed by Tanaka for primary reference fuel (PRF) oxidation. We added skeletal reactions for PRF oxidation to a reduced toluene sub-mechanism. The high-temperature reaction mechanism was mainly from the previous work of Patel and an important TRF reaction [H+O2+M=O+OH+M] was added. Validation of the ignition delay time was performed for single-component, two-component and three-component fuels and the results were satisfactory for HCCI engine conditions. A comparison of various experimental data available in the literature, including shock tube tests and HCCI engine experiments, shows that the present TRF mechanism performs well. A sensitivity analysis at the moment of maximum heat production shows that the reaction of phenol radicals (C6H<5) with O2 is more sensitive as the pressure increases. Formaldehyde (HCHO) is a very important intermediate species and should not be neglected.

  • 加载中
    1. [1]

      (1) Yao, M. F.; Zheng, Z. L.; Liu, H. F. Prog. Energ. Combust. 2009, 35, 398.

    2. [2]

      (2) Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1563.

    3. [3]

      (3) Tanaka, S.; Ayala, F.; Keck, J. C. Combust. Flame 2003, 134, 219.

    4. [4]

      (4) Sivaramakrishnan, R.; Tranter, R. S.; Brezinsky, K. Proc. Combust. Inst. 2005, 30, 1165.

    5. [5]

      (5) Pitz, W. J.; Cernansky, N. P.; Dryer, F.L.; E lfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Tech. Pap. Ser. 2007, 2007-01-0175.

    6. [6]

      (6) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 1998, 114, 149.

    7. [7]

      (7) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2002, 129, 253.

    8. [8]

      (8) Chaos, M.; Zhao, Z.; Kazakov, A.; kulakrishnan, P.; Angioletti, M.; Dryer, F.L. A PRF+Toluene Surrogate Fuel Model for Simulating Gasoline Kinetics. In 5th U.S. Combustion Meeting, March 25-28, 2007, University of California, San Die , California. Paper # E26.

    9. [9]

      (9) Andrae, J. C. G.; Björnbom, P.; Cracknell, R. F.; Kalghatgi, G. T. Combust. Flame 2007, 149, 2.

    10. [10]

      (10) Andrae, J. C. G.; Brinck, T.; Kalghatgi, G. T. Combust. Flame 2008, 155, 696.

    11. [11]

      (11) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz, W. J. Proc. Combust. Inst. 2009, 32, 411.

    12. [12]

      (12) Pitz, W. J.; Seiser, R.; Bozzelli, J. W.; Seshadri, K.; Chen, C. J.; Costa, D.; Fournet, R.; Billaud, F.; Battin-Leclerc, F.; Weatbrook, C. K. Chemical Kinetic Study of Toluene Oxidation. In 29th International Symposium on Combustion, Hokkaido University, Sapporo, Japan. July 21-26, 2002;Elsevier: New York. 2002. UCRL-JC-125890.

    13. [13]

      (13) Anderlohr, J. M.; Bounaceur, R.; Pires Da Cruz, A.; Battin-Leclerc, F. Combust. Flame 2009, 156, 505.

    14. [14]

      (14) Tsurushima, T. Proc. Combust. Inst. 2009, 32, 2835.

    15. [15]

      (15) Alzueta, M. U.; Glarborg, P.; Dam-johansen, K. Int. J. Chem. Kinet. 2000, 32, 498.

    16. [16]

      (16) Welcome to Chemical-Kinetic Mechanisms for Combustion Applications. Http://maeweb.ucsd.edu/~combustion/cermech/index.html (accessed Sep 27, 2010).

    17. [17]

      (17) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. Proc. Combust. Inst. 2007, 31, 211.

    18. [18]

      (18) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. J. Phys. Chem. A 2006, 110, 9867.

    19. [19]

      (19) Oehlschlaeger, M. A.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2006, 147, 195.

    20. [20]

      (20) Seta, T.; Nakajima, M.; Miyoshi, J. Phys. Chem. A 2006, 110, 5081.

    21. [21]

      (21) Silva, G.; Bozzelli, J. W. Proc. Combust. Inst. 2009, 32, 287.

    22. [22]

      (22) Davidson, D. F.; Gauthier, B. M.; Hanson, R. K. Proc. Combust. Inst. 2005, 30, 1175.

    23. [23]

      (23) Klotz, S. D.; Brezinsky, K.; Glassman, I. Modeling the Combustion of Toluene-Butane Blends. In 27th Symposium (International) on Combustion, University of Colorado at boulder, USA; The Combustion Institute: Pittsburgh, PA, 1998; 337.

    24. [24]

      (24) Patel, A.; Kong, S. C.; Reitz, R. D. SAE Tech. Pap. Ser. 2004, 2004-01-0558.

    25. [25]

      (25) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKIN Release 4.1, Reaction Design: San Die , CA, 2006.

    26. [26]

      (26) Fieweger, K.; Blumenthal, K. R.; Adomeit, G. Combust. Flame 1997, 109, 599.

    27. [27]

      (27) Ciezki, H. K.; Adomeit, G. Combust. Flame 1993, 93, 421.

    28. [28]

      (28) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300.

    29. [29]

      (29) Dec, J. E.; Sj?berg, M. SAE Tech. Pap. Ser. 2003, 2003-01-0752.

    30. [30]

      (30) Aroonsrisopon, T.; Sohm, V.; Werner, P.; Foster, D. E.; Morikawa, T.; Lida, M. SAE Tech. Pap. Ser. 2002, 2002-01-2830.


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

Metrics
  • PDF Downloads(1735)
  • Abstract views(3242)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return