Citation:
LI Jun-Nan, PU Min, HE Shu-Heng, HE Jing, EVANS David G.. Reaction Mechanism of Acetylene Hydrogenation Catalyzed by Pd8 Cluster[J]. Acta Physico-Chimica Sinica,
;2011, 27(04): 793-800.
doi:
10.3866/PKU.WHXB20110332
-
The mechanism of acetylene hydrogenation catalyzed by Pd8 cluster was investigated by density functional theory (DFT) method at B3PW91/GEN level. The calculation results showed that H2 dissociated into H atoms wherever it adsorbed and the H atoms then adsorbed onto the surface of the Pd8 cluster. The dissociation of H2 is necessary for the hydrogenation of acetylene to ethane catalyzed by the Pd8 cluster. The mechanism of acetylene hydrogenation is dependent on two isomers: acetylene and vinylidene on the Pd8 cluster (Pd8(2H)-CH=CH and Pd8(2H)-C=CH2). The two pathways follow a multistep and successive process to complete the hydrogenation of acetylene. However, a difference exists between Pd8(2H)-CH=CH and Pd8(2H)-C=CH2. For the Pd8(2H)-CH=CH pathway, dissociated H atoms add to the C atom of acetylene on the Pd8 cluster in different steps until they produce ethane. The Pd8(2H)-CH=CH2 pathway is complex and proceeds by two different transition states to create ethylidyne, and then H atoms add to the C atom until hydrogenation ceases. Many valuable C2 organic intermediate compounds are produced during the process and some of them transform by proton translocation, which connects the Pd8(2H)-CH=CH and Pd8(2H)-C=CH2 pathways.
-
-
-
[1]
(1) Azizi, Y.; Petit, C.; Pitchon, V. J. Catal. 2008, 256, 338.
-
[2]
(2) Bosa, A.N.R.; Hofa, E. W.; Westerterp, K. R. Chem. Eng. Sci.1993, 48, 1959.
-
[3]
(3) Sevin, A.; Yu, H. T.; Evleth, E. M., J. Mol. Struc.-Theochem. 1983, 104, 163.
-
[4]
(4) Pallassana, V.; Neurock, M.; Lusvardi, V. S.; Lerou, J. J.;Kragten, D. D.; Santen, A. J. Phys. Chem. B 2002, 106, 1656.
-
[5]
(5) Gi la, C. E.; Aduriz, H. R.; Bodnariuk, P. Appl. Catal. 1986, 27, 133.
-
[6]
(6) Lei, M.Yi.; Xiao, Y. J.; Liu, W. M.; Fukamizu, K.; Chiba, S.; Ando, K.; Narasaka, K. Tetrahedron 2009, 65, 6888.
-
[7]
(7) Semagina, N.; Lioubov, K. M. Catal. Lett. 2009, 127, 334.
-
[8]
(8) Boris, V. L. Thermochim. Acta 2002, 386, 1.
-
[9]
(9) Sigwalt, P.; Moreau, M. Prog. Polym. Sci. 2006, 31, 44.
-
[10]
(10) Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong Y. J.; Li, Z. Y.; Xia, Y. N. Nano Lett. 2005, 5, 2058.
-
[11]
(11) Pol, V. G.; Grisaru, H.; Gedanken, A. Langmuir 2005, 21, 3635.
-
[12]
(12) Zhang, X. Y.; Li, S. Y.; Yang, L; Fan, C. Q. Spectrochim. Acta A 2007, 68, 763.
-
[13]
(13) Oh, S. D.; Kim, M. R.; Choi, S. H.; Chun, J. H.; Lee, K. P.; palan, A.; Hwang, C. G.; Kim, S. H. J. Ind. Eng. Chem. 2008, 14, 687.
-
[14]
(14) Huang, W.; Pyrz, W.; Lobo, R. F.; Chen, J. G. Appl. Catal. A-Gen. 2007, 333, 254.
-
[15]
(15) Miao, S. J.; Wang, Y.; Ma, D.; Zhu, Q. J.; Zhou, S.; Su, L. L.; Tan, D. L.; Bao, X. H. J. Phys. Chem. B 2004, 108, 17866.
-
[16]
(16) Zea, H.; Lester, K.; Datye, A. K.; Rightor, E.; Gulotty, R.; Waterman, W.; Smith, M. Appl. Catall. A-Gen. 2005, 282, 237.
-
[17]
(17) Ismagilov, Z. R.; Yashnik, S. A.; Startsev, A. N.; Boronin, A. I.; Stadnichenko, A. I.; Kriventsov, V.V.; Kasztelan, S.; Guillaume, D.; Makkee, M.; Moulijn, Jacob A. Catal. Today 2009, 144, 235.
-
[18]
(18) Ghenoa, S. M.; Damyanova, S.; Riguetto, B. A.; Marques, C. M. P.; Leite, C. A. P.; Buenoa, J. M. C. J. Mol. Catal. A-Chem 2003, 198, 263.
-
[19]
(19) Wang, X. L; Wovchko, E. A. J. Phys. Chem. B 2005, 109, 16363.
-
[20]
(20) Maloney, S. D.; Zhou, P. L.; Kelley, M. J.; Gates, B. C. J. Phys. Chem. 1991, 95, 5409
-
[21]
(21) Aboul-Gheit, A. K.; Aboul-Fotouh, S. M.; Aboul-Gheit, N. A. K. Appl. Catal. A-Gen. 2005, 283, 157.
-
[22]
(22) Sugii, T.; Kamiya, Y.; Okuhara, T. Appl. Catal. A-Gen. 2006, 312, 45.
-
[23]
(23) Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Chem. Mater. 2004, 16, 3714
-
[24]
(24) Piqueras, C. M.; Ferna′ndez, M. B.; Tonetto, G. M.; Bottini, S.; Damiani, D. E. Catal. Commun. 2006, 7, 344.
-
[25]
(25) Okumura, K.; Yoshimoto, R.; Uruga, T.; Tanida, H.; Kato, K.; Yokota, S.; Niwa, M. J. Phys. Chem. B 2004, 108, 6250.
-
[26]
(26) Huang, S. P.; Mainardi, D. S.; Balbuena, P. B. Surf. Sci. 2003, 545, 163.
-
[27]
(27) Huang, S. Y.; Huang, C. D.; Chang, B. T.; Yeh, C. T. J. Phys. Chem. B, 2006, 110, 21783.
-
[28]
(28) Gu, Z.; Balbuena, P. B. Catal. Today 2005, 105, 152.
-
[29]
(29) Borodzinski, A.; ?eübiowski A. Langmuir 1997, 13, 883.
-
[30]
(30) Borodzinski, A. Catal. Lett. 1999, 63, 35.
-
[31]
(31) Hong, Y. Y.; Sen, A. Chem. Mater. 2007, 19, 961.
-
[32]
(32) Kidambi, S.; Dai, J. H.; Li, J.; Bruening, M. L. J. Am. Chem. Soc. 2004, 126, 2658.
-
[33]
(33) Duca, D.; Varga, Z.; Manna, G. L.; Vidóczy, T. Theor. Chem. Acc. 2000, 104, 302.
-
[34]
(34) Azad, S.; Kaltchev, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B, 2000, 104, 3107.
-
[35]
(35) Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009.
-
[36]
(36) Mei, D. P.; Sheth, A.; Neurock, M.; Smith, C. M. J. Catal. 2006, 242, 1.
-
[37]
(37) Mittendorfer, F.; Thomazeau, C.; Raybaud, P.; Toulhoat, H. J. Phys. Chem. B 2003, 107, 12287.
-
[38]
(38) Belelli, P. G.; Castellani, N. J. Surf. Rev. Lett. 2008, 15, 249.
-
[39]
(39) Duca, D.; Varga, Z.; Manna, G. L.; Vidóczy, T. Theor. Chem. Acc. 2000, 104, 302.
-
[40]
(40) Fahmi, A.; Santen, R. A. J. Phys. Chem. 1996, 100, 5676.
-
[41]
(41) Kuchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535.
-
[42]
(42) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision B.04; Gaussian, Inc.: Pitburgh, PA, 2003.
-
[43]
(43) Srivastava, V.; Balasubramaniam, R. Materials Science and Engineering A 2001, 304, 897.
-
[44]
(44) Crespo, E. A.; Claramonte, S.; Ruda, M.; Ramos de Debiaggi, S. International Journal of Hydrogen Energy 2008, 33, 3561.
-
[45]
(45) Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009.
-
[46]
(46) Moc, J.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A, 2003, 107, 4929.
-
[47]
(47) Azad, S.; Kaltchec, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B 2000, 104, 3107.
-
[48]
(48) Horiuti, J.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[4]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[9]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[10]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[11]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[12]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[13]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[16]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[17]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[18]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[19]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[20]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[1]
Metrics
- PDF Downloads(1568)
- Abstract views(4145)
- HTML views(19)