Citation: LI Jun-Nan, PU Min, HE Shu-Heng, HE Jing, EVANS David G.. Reaction Mechanism of Acetylene Hydrogenation Catalyzed by Pd8 Cluster[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 793-800. doi: 10.3866/PKU.WHXB20110332 shu

Reaction Mechanism of Acetylene Hydrogenation Catalyzed by Pd8 Cluster

  • Received Date: 19 October 2010
    Available Online: 17 February 2011

    Fund Project: 国家自然科学基金(20531010, 20773009) (20531010, 20773009)国家重点基础研究发展计划(973) (2009CB939802)资助项目 (973) (2009CB939802)

  • The mechanism of acetylene hydrogenation catalyzed by Pd8 cluster was investigated by density functional theory (DFT) method at B3PW91/GEN level. The calculation results showed that H2 dissociated into H atoms wherever it adsorbed and the H atoms then adsorbed onto the surface of the Pd8 cluster. The dissociation of H2 is necessary for the hydrogenation of acetylene to ethane catalyzed by the Pd8 cluster. The mechanism of acetylene hydrogenation is dependent on two isomers: acetylene and vinylidene on the Pd8 cluster (Pd8(2H)-CH=CH and Pd8(2H)-C=CH2). The two pathways follow a multistep and successive process to complete the hydrogenation of acetylene. However, a difference exists between Pd8(2H)-CH=CH and Pd8(2H)-C=CH2. For the Pd8(2H)-CH=CH pathway, dissociated H atoms add to the C atom of acetylene on the Pd8 cluster in different steps until they produce ethane. The Pd8(2H)-CH=CH2 pathway is complex and proceeds by two different transition states to create ethylidyne, and then H atoms add to the C atom until hydrogenation ceases. Many valuable C2 organic intermediate compounds are produced during the process and some of them transform by proton translocation, which connects the Pd8(2H)-CH=CH and Pd8(2H)-C=CH2 pathways.

  • 加载中
    1. [1]

      (1) Azizi, Y.; Petit, C.; Pitchon, V. J. Catal. 2008, 256, 338.

    2. [2]

      (2) Bosa, A.N.R.; Hofa, E. W.; Westerterp, K. R. Chem. Eng. Sci.1993, 48, 1959.

    3. [3]

      (3) Sevin, A.; Yu, H. T.; Evleth, E. M., J. Mol. Struc.-Theochem. 1983, 104, 163.

    4. [4]

      (4) Pallassana, V.; Neurock, M.; Lusvardi, V. S.; Lerou, J. J.;Kragten, D. D.; Santen, A. J. Phys. Chem. B 2002, 106, 1656.

    5. [5]

      (5) Gi la, C. E.; Aduriz, H. R.; Bodnariuk, P. Appl. Catal. 1986, 27, 133.

    6. [6]

      (6) Lei, M.Yi.; Xiao, Y. J.; Liu, W. M.; Fukamizu, K.; Chiba, S.; Ando, K.; Narasaka, K. Tetrahedron 2009, 65, 6888.

    7. [7]

      (7) Semagina, N.; Lioubov, K. M. Catal. Lett. 2009, 127, 334.

    8. [8]

      (8) Boris, V. L. Thermochim. Acta 2002, 386, 1.

    9. [9]

      (9) Sigwalt, P.; Moreau, M. Prog. Polym. Sci. 2006, 31, 44.

    10. [10]

      (10) Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong Y. J.; Li, Z. Y.; Xia, Y. N. Nano Lett. 2005, 5, 2058.

    11. [11]

      (11) Pol, V. G.; Grisaru, H.; Gedanken, A. Langmuir 2005, 21, 3635.

    12. [12]

      (12) Zhang, X. Y.; Li, S. Y.; Yang, L; Fan, C. Q. Spectrochim. Acta A 2007, 68, 763.

    13. [13]

      (13) Oh, S. D.; Kim, M. R.; Choi, S. H.; Chun, J. H.; Lee, K. P.; palan, A.; Hwang, C. G.; Kim, S. H. J. Ind. Eng. Chem. 2008, 14, 687.

    14. [14]

      (14) Huang, W.; Pyrz, W.; Lobo, R. F.; Chen, J. G. Appl. Catal. A-Gen. 2007, 333, 254.

    15. [15]

      (15) Miao, S. J.; Wang, Y.; Ma, D.; Zhu, Q. J.; Zhou, S.; Su, L. L.; Tan, D. L.; Bao, X. H. J. Phys. Chem. B 2004, 108, 17866.

    16. [16]

      (16) Zea, H.; Lester, K.; Datye, A. K.; Rightor, E.; Gulotty, R.; Waterman, W.; Smith, M. Appl. Catall. A-Gen. 2005, 282, 237.

    17. [17]

      (17) Ismagilov, Z. R.; Yashnik, S. A.; Startsev, A. N.; Boronin, A. I.; Stadnichenko, A. I.; Kriventsov, V.V.; Kasztelan, S.; Guillaume, D.; Makkee, M.; Moulijn, Jacob A. Catal. Today 2009, 144, 235.

    18. [18]

      (18) Ghenoa, S. M.; Damyanova, S.; Riguetto, B. A.; Marques, C. M. P.; Leite, C. A. P.; Buenoa, J. M. C. J. Mol. Catal. A-Chem 2003, 198, 263.

    19. [19]

      (19) Wang, X. L; Wovchko, E. A. J. Phys. Chem. B 2005, 109, 16363.

    20. [20]

      (20) Maloney, S. D.; Zhou, P. L.; Kelley, M. J.; Gates, B. C. J. Phys. Chem. 1991, 95, 5409

    21. [21]

      (21) Aboul-Gheit, A. K.; Aboul-Fotouh, S. M.; Aboul-Gheit, N. A. K. Appl. Catal. A-Gen. 2005, 283, 157.

    22. [22]

      (22) Sugii, T.; Kamiya, Y.; Okuhara, T. Appl. Catal. A-Gen. 2006, 312, 45.

    23. [23]

      (23) Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Chem. Mater. 2004, 16, 3714

    24. [24]

      (24) Piqueras, C. M.; Ferna′ndez, M. B.; Tonetto, G. M.; Bottini, S.; Damiani, D. E. Catal. Commun. 2006, 7, 344.

    25. [25]

      (25) Okumura, K.; Yoshimoto, R.; Uruga, T.; Tanida, H.; Kato, K.; Yokota, S.; Niwa, M. J. Phys. Chem. B 2004, 108, 6250.

    26. [26]

      (26) Huang, S. P.; Mainardi, D. S.; Balbuena, P. B. Surf. Sci. 2003, 545, 163.

    27. [27]

      (27) Huang, S. Y.; Huang, C. D.; Chang, B. T.; Yeh, C. T. J. Phys. Chem. B, 2006, 110, 21783.

    28. [28]

      (28) Gu, Z.; Balbuena, P. B. Catal. Today 2005, 105, 152.

    29. [29]

      (29) Borodzinski, A.; ?eübiowski A. Langmuir 1997, 13, 883.

    30. [30]

      (30) Borodzinski, A. Catal. Lett. 1999, 63, 35.

    31. [31]

      (31) Hong, Y. Y.; Sen, A. Chem. Mater. 2007, 19, 961.

    32. [32]

      (32) Kidambi, S.; Dai, J. H.; Li, J.; Bruening, M. L. J. Am. Chem. Soc. 2004, 126, 2658.

    33. [33]

      (33) Duca, D.; Varga, Z.; Manna, G. L.; Vidóczy, T. Theor. Chem. Acc. 2000, 104, 302.

    34. [34]

      (34) Azad, S.; Kaltchev, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B, 2000, 104, 3107.

    35. [35]

      (35) Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009.

    36. [36]

      (36) Mei, D. P.; Sheth, A.; Neurock, M.; Smith, C. M. J. Catal. 2006, 242, 1.

    37. [37]

      (37) Mittendorfer, F.; Thomazeau, C.; Raybaud, P.; Toulhoat, H. J. Phys. Chem. B 2003, 107, 12287.

    38. [38]

      (38) Belelli, P. G.; Castellani, N. J. Surf. Rev. Lett. 2008, 15, 249.

    39. [39]

      (39) Duca, D.; Varga, Z.; Manna, G. L.; Vidóczy, T. Theor. Chem. Acc. 2000, 104, 302.

    40. [40]

      (40) Fahmi, A.; Santen, R. A. J. Phys. Chem. 1996, 100, 5676.

    41. [41]

      (41) Kuchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535.

    42. [42]

      (42) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision B.04; Gaussian, Inc.: Pitburgh, PA, 2003.

    43. [43]

      (43) Srivastava, V.; Balasubramaniam, R. Materials Science and Engineering A 2001, 304, 897.

    44. [44]

      (44) Crespo, E. A.; Claramonte, S.; Ruda, M.; Ramos de Debiaggi, S. International Journal of Hydrogen Energy 2008, 33, 3561.

    45. [45]

      (45) Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009.

    46. [46]

      (46) Moc, J.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A, 2003, 107, 4929.

    47. [47]

      (47) Azad, S.; Kaltchec, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B 2000, 104, 3107.

    48. [48]

      (48) Horiuti, J.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(1568)
  • Abstract views(4102)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return