Citation: LI Jun-Nan, PU Min, HE Shu-Heng, HE Jing, EVANS David G.. Reaction Mechanism of Acetylene Hydrogenation Catalyzed by Pd8 Cluster[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 793-800. doi: 10.3866/PKU.WHXB20110332 shu

Reaction Mechanism of Acetylene Hydrogenation Catalyzed by Pd8 Cluster

  • Received Date: 19 October 2010
    Available Online: 17 February 2011

    Fund Project: 国家自然科学基金(20531010, 20773009) (20531010, 20773009)国家重点基础研究发展计划(973) (2009CB939802)资助项目 (973) (2009CB939802)

  • The mechanism of acetylene hydrogenation catalyzed by Pd8 cluster was investigated by density functional theory (DFT) method at B3PW91/GEN level. The calculation results showed that H2 dissociated into H atoms wherever it adsorbed and the H atoms then adsorbed onto the surface of the Pd8 cluster. The dissociation of H2 is necessary for the hydrogenation of acetylene to ethane catalyzed by the Pd8 cluster. The mechanism of acetylene hydrogenation is dependent on two isomers: acetylene and vinylidene on the Pd8 cluster (Pd8(2H)-CH=CH and Pd8(2H)-C=CH2). The two pathways follow a multistep and successive process to complete the hydrogenation of acetylene. However, a difference exists between Pd8(2H)-CH=CH and Pd8(2H)-C=CH2. For the Pd8(2H)-CH=CH pathway, dissociated H atoms add to the C atom of acetylene on the Pd8 cluster in different steps until they produce ethane. The Pd8(2H)-CH=CH2 pathway is complex and proceeds by two different transition states to create ethylidyne, and then H atoms add to the C atom until hydrogenation ceases. Many valuable C2 organic intermediate compounds are produced during the process and some of them transform by proton translocation, which connects the Pd8(2H)-CH=CH and Pd8(2H)-C=CH2 pathways.

  • 加载中
    1. [1]

      (1) Azizi, Y.; Petit, C.; Pitchon, V. J. Catal. 2008, 256, 338.

    2. [2]

      (2) Bosa, A.N.R.; Hofa, E. W.; Westerterp, K. R. Chem. Eng. Sci.1993, 48, 1959.

    3. [3]

      (3) Sevin, A.; Yu, H. T.; Evleth, E. M., J. Mol. Struc.-Theochem. 1983, 104, 163.

    4. [4]

      (4) Pallassana, V.; Neurock, M.; Lusvardi, V. S.; Lerou, J. J.;Kragten, D. D.; Santen, A. J. Phys. Chem. B 2002, 106, 1656.

    5. [5]

      (5) Gi la, C. E.; Aduriz, H. R.; Bodnariuk, P. Appl. Catal. 1986, 27, 133.

    6. [6]

      (6) Lei, M.Yi.; Xiao, Y. J.; Liu, W. M.; Fukamizu, K.; Chiba, S.; Ando, K.; Narasaka, K. Tetrahedron 2009, 65, 6888.

    7. [7]

      (7) Semagina, N.; Lioubov, K. M. Catal. Lett. 2009, 127, 334.

    8. [8]

      (8) Boris, V. L. Thermochim. Acta 2002, 386, 1.

    9. [9]

      (9) Sigwalt, P.; Moreau, M. Prog. Polym. Sci. 2006, 31, 44.

    10. [10]

      (10) Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong Y. J.; Li, Z. Y.; Xia, Y. N. Nano Lett. 2005, 5, 2058.

    11. [11]

      (11) Pol, V. G.; Grisaru, H.; Gedanken, A. Langmuir 2005, 21, 3635.

    12. [12]

      (12) Zhang, X. Y.; Li, S. Y.; Yang, L; Fan, C. Q. Spectrochim. Acta A 2007, 68, 763.

    13. [13]

      (13) Oh, S. D.; Kim, M. R.; Choi, S. H.; Chun, J. H.; Lee, K. P.; palan, A.; Hwang, C. G.; Kim, S. H. J. Ind. Eng. Chem. 2008, 14, 687.

    14. [14]

      (14) Huang, W.; Pyrz, W.; Lobo, R. F.; Chen, J. G. Appl. Catal. A-Gen. 2007, 333, 254.

    15. [15]

      (15) Miao, S. J.; Wang, Y.; Ma, D.; Zhu, Q. J.; Zhou, S.; Su, L. L.; Tan, D. L.; Bao, X. H. J. Phys. Chem. B 2004, 108, 17866.

    16. [16]

      (16) Zea, H.; Lester, K.; Datye, A. K.; Rightor, E.; Gulotty, R.; Waterman, W.; Smith, M. Appl. Catall. A-Gen. 2005, 282, 237.

    17. [17]

      (17) Ismagilov, Z. R.; Yashnik, S. A.; Startsev, A. N.; Boronin, A. I.; Stadnichenko, A. I.; Kriventsov, V.V.; Kasztelan, S.; Guillaume, D.; Makkee, M.; Moulijn, Jacob A. Catal. Today 2009, 144, 235.

    18. [18]

      (18) Ghenoa, S. M.; Damyanova, S.; Riguetto, B. A.; Marques, C. M. P.; Leite, C. A. P.; Buenoa, J. M. C. J. Mol. Catal. A-Chem 2003, 198, 263.

    19. [19]

      (19) Wang, X. L; Wovchko, E. A. J. Phys. Chem. B 2005, 109, 16363.

    20. [20]

      (20) Maloney, S. D.; Zhou, P. L.; Kelley, M. J.; Gates, B. C. J. Phys. Chem. 1991, 95, 5409

    21. [21]

      (21) Aboul-Gheit, A. K.; Aboul-Fotouh, S. M.; Aboul-Gheit, N. A. K. Appl. Catal. A-Gen. 2005, 283, 157.

    22. [22]

      (22) Sugii, T.; Kamiya, Y.; Okuhara, T. Appl. Catal. A-Gen. 2006, 312, 45.

    23. [23]

      (23) Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Chem. Mater. 2004, 16, 3714

    24. [24]

      (24) Piqueras, C. M.; Ferna′ndez, M. B.; Tonetto, G. M.; Bottini, S.; Damiani, D. E. Catal. Commun. 2006, 7, 344.

    25. [25]

      (25) Okumura, K.; Yoshimoto, R.; Uruga, T.; Tanida, H.; Kato, K.; Yokota, S.; Niwa, M. J. Phys. Chem. B 2004, 108, 6250.

    26. [26]

      (26) Huang, S. P.; Mainardi, D. S.; Balbuena, P. B. Surf. Sci. 2003, 545, 163.

    27. [27]

      (27) Huang, S. Y.; Huang, C. D.; Chang, B. T.; Yeh, C. T. J. Phys. Chem. B, 2006, 110, 21783.

    28. [28]

      (28) Gu, Z.; Balbuena, P. B. Catal. Today 2005, 105, 152.

    29. [29]

      (29) Borodzinski, A.; ?eübiowski A. Langmuir 1997, 13, 883.

    30. [30]

      (30) Borodzinski, A. Catal. Lett. 1999, 63, 35.

    31. [31]

      (31) Hong, Y. Y.; Sen, A. Chem. Mater. 2007, 19, 961.

    32. [32]

      (32) Kidambi, S.; Dai, J. H.; Li, J.; Bruening, M. L. J. Am. Chem. Soc. 2004, 126, 2658.

    33. [33]

      (33) Duca, D.; Varga, Z.; Manna, G. L.; Vidóczy, T. Theor. Chem. Acc. 2000, 104, 302.

    34. [34]

      (34) Azad, S.; Kaltchev, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B, 2000, 104, 3107.

    35. [35]

      (35) Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009.

    36. [36]

      (36) Mei, D. P.; Sheth, A.; Neurock, M.; Smith, C. M. J. Catal. 2006, 242, 1.

    37. [37]

      (37) Mittendorfer, F.; Thomazeau, C.; Raybaud, P.; Toulhoat, H. J. Phys. Chem. B 2003, 107, 12287.

    38. [38]

      (38) Belelli, P. G.; Castellani, N. J. Surf. Rev. Lett. 2008, 15, 249.

    39. [39]

      (39) Duca, D.; Varga, Z.; Manna, G. L.; Vidóczy, T. Theor. Chem. Acc. 2000, 104, 302.

    40. [40]

      (40) Fahmi, A.; Santen, R. A. J. Phys. Chem. 1996, 100, 5676.

    41. [41]

      (41) Kuchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535.

    42. [42]

      (42) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision B.04; Gaussian, Inc.: Pitburgh, PA, 2003.

    43. [43]

      (43) Srivastava, V.; Balasubramaniam, R. Materials Science and Engineering A 2001, 304, 897.

    44. [44]

      (44) Crespo, E. A.; Claramonte, S.; Ruda, M.; Ramos de Debiaggi, S. International Journal of Hydrogen Energy 2008, 33, 3561.

    45. [45]

      (45) Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009.

    46. [46]

      (46) Moc, J.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A, 2003, 107, 4929.

    47. [47]

      (47) Azad, S.; Kaltchec, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B 2000, 104, 3107.

    48. [48]

      (48) Horiuti, J.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.


  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    15. [15]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(1568)
  • Abstract views(4158)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return