Citation: ZHANG Jian-Jun, ZU Hui, GAO Yuan. Formation Thermodynamics of Adefovir Dipivoxil-Saccharin Co-Crystals[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 547-552. doi: 10.3866/PKU.WHXB20110330 shu

Formation Thermodynamics of Adefovir Dipivoxil-Saccharin Co-Crystals

  • Received Date: 25 September 2010
    Available Online: 17 February 2011

    Fund Project: 国家重大新药创制科技重大专项新制剂与新释药系统技术平台项目(2009ZX09310-004, 2011ZX09201-101-02)资助 (2009ZX09310-004, 2011ZX09201-101-02)

  • The solubilities of adefovir dipivoxil (AD) in saccharin (SAC) ethanolic solutions at different temperatures and in SAC aqueous solutions at constant temperature were determined to investigate the thermodynamic characteristics of AD-SAC co-crystals. The solubility products (Ksp), complexation constants (K11), and Gibbs free energy (ΔG0) were calculated. Ternary phase diagrams of the AD-SAC- ethanol systems at various temperatures were established. We demonstrate that temperature has significant influence on the Ksp and K11 in ethanolic solution. Ksp decreased and K11 increased with a decrease in temperature. Dissolution of the co-crystals in ethanol is an endothermic process. Co-crystal formation is a spontaneous and endothermic process. A decrease in temperature favors complexation between the AD and SAC in ethanol. In aqueous solutions of SAC, the solubility of AD shows a three- stage profile with a platform.

  • 加载中
    1. [1]

      (1) Lara-Ochoa, F.; Espinosa-Perez, G. Supramol. Chem. 2007, 19,553.

    2. [2]

      (2) Gao, Y.; Zu, H.; Zhang, J. J. Chem. Prog. 2010, 22, 829.

    3. [3]

      [高 缘, 祖 卉, 张建军. 化学进展, 2010, 22, 829.]

    4. [4]

      (3) Rodriguez-Hornedo, N.; Nehm, S.; Jayasankar, A. Cocrystals: Design, Properties, and Formation Mechanisms. 1st ed.; Informa Healthcare USA, Inc: New York, 2007; pp 615-635.

    5. [5]

      (4) Patrick, M. N. Engl. J. Med. 2003, 348, 808.

    6. [6]

      (5) Starrett, J.; Tortolani, D.; Russell, J.; Hitchcock, M.; Whiterock, V.; Martin, J.; Mansuri, M. J. Med. Chem. 1994, 37, 1857.

    7. [7]

      (6) Rodriguez-Hornedo, N.; Nehm, S.; Seefeldt, K.; Pagan-Torres, Y.; Falkiewicz, C. Mol. Pharm. 2005, 3, 362.

    8. [8]

      (7) Jayasankar, A.; Reddy, L.; Bethune, S.; Rodriguez-Hornedo, N. Cryst. Growth Des. 2009, 9, 889.

    9. [9]

      (8) Chadwick, K.; Davey, R.; Sadiq, G.; Cross, W.; Pritchard, R. Cryst. Eng. Commun. 2009, 11, 412.

    10. [10]

      (9) Ainouz, A.; Authelin, J.; Billot, P.; Lieberman, H. Int. J. Pharm. 2009, 374, 82.

    11. [11]

      (10) Nehm S.; Rodriguez-Spong, B.; Rodriguez-Hornedo, N. Cryst. Growth Des. 2006, 6, 592.

    12. [12]

      (11) Schartman, R. Int. J. Pharm. 2008, 365, 77.

    13. [13]

      (12) Chiarella, R.; Davey, R.; Peterson, M. Cryst. Growth Des. 2007, 7, 1223.

    14. [14]

      (13) Martin, A. Physical Pharmacy. 4th ed.; Lea & Febiger: Philadelphia, 1993; pp 265-268.


  • 加载中
    1. [1]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    7. [7]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

Metrics
  • PDF Downloads(1427)
  • Abstract views(2913)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return