Citation: DING Xiao-Chun, CHEN Xiu, ZHOU Jian-Hua, WANG Tao, SUN Dun, HE Jian-Ping. Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 711-716. doi: 10.3866/PKU.WHXB20110327 shu

Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

  • Received Date: 27 October 2010
    Available Online: 16 February 2011

    Fund Project: 国家自然科学基金(50871053)资助项目 (50871053)

  • Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5 (carbon replicated from SBA-15 silica) by NaBH4 reduction. X-ray diffraction (XRD) suggests alloy formation between Pt and Ni. X-ray photoelectron spectroscopy (XPS) shows that Pt-Ni/CMK-5 (5:1) has more detectable oxidized Ni. More metallic Pt is present on Pt-Ni/CMK-5 (5:1) (atomic ratio) than on Pt/CMK-5. Oxidized Ni species, such as NiO, Ni(OH)2, and NiOOH, favor the adsorption of methanol and the dissociation of methanol from the surface of Pt. Cyclic voltammetry shows that Pt-Ni/CMK-5 (5:1) has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1. It has more resistance to CO poisoning than Pt/CMK-5.

  • 加载中
    1. [1]

      (1) Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H. M.; Yia, B. L. J. Power Sources 2010, 195, 4098.

    2. [2]

      (2) Li, W. Z.; Zhou, W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Electrochim. Acta 2004, 49, 1045.

    3. [3]

      (3) Yang, C. W.; Wang, D. L.; Hu, X. G.; Dai, C. S.; Liang, Z. J. Alloy. Compd. 2008, 448, 109.

    4. [4]

      (4) Wang, X. M.; Li, N.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem., C 2010, 114, 16996.

    5. [5]

      (5) Tang, H.; Chen, J. H.; Nie, L. H.; Liu, D. Y.; Deng, W.; Kuang, Y. F.; Yao, S. Z. J. Colloid Interface Sci. 2004, 269, 26.

    6. [6]

      (6) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Nanosci. Nanotechnol. 2003, 3, 247.

    7. [7]

      (7) Yen, C. H.; Shimizu, K.; Lin, Y. Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Energy Fuels 2007, 21, 2268.

    8. [8]

      (8) Shimazaki, Y.; Hayasaka, S.; Koyama, T,; Nagao, D.; Kobayashi, Y.; Konno, M. J. Colloid Interface Sci. 2010, 350, 580.

    9. [9]

      (9) Zhao, Y.; Yifeng, E.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H. Electrochim. Acta 2007, 52, 5873.

    10. [10]

      (10) Do, J. S.; Chen, Y. T.; Lee, M. H. J. Power Sources 2007, 172, 623.

    11. [11]

      (11) Choi, J. H.; Park, K. W.; Kwon, B. K.; Sung, Y. E. J. Electrochem. Soc. 2003, 150, 773.

    12. [12]

      (12) Liu, F.; Lee, J. Y.; Zhou, W. J. J. Phys. Chem. B 2004, 108, 17959.

    13. [13]

      (13) Jeon, T. Y.; Yoo, S. J.; Cho, Y. H.; Lee, K. S.; Kang, S. H.; Sung, Y. E. J. Phys. Chem. C 2009, 113, 19732.

    14. [14]

      (14) Jiang, S. J.; Ma, Y. W.; Tao, H. S.; Jian, G. Q.; Wang, X. Z.; Fan, Y. N.; Zhu, J. M.; Hu, Z. J. Nanosci. Nanotechnol. 2010, 10, 3895.

    15. [15]

      (15) Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Langmuir 2007, 23, 6438.

    16. [16]

      (16) He, C. Z.; Kunz, H. R.; Fenton, J. M. J. Electrochem. Soc. 2003, 150, A1071.

    17. [17]

      (17) Mathiyarasu, J.; Remona, A. M.; Mani, A.; Phani, K. L. N.; Yegnaraman, V. J. Solid State Electrochem. 2004, 8, 968.

    18. [18]

      (18) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.

    19. [19]

      (19) Wang, Z. B.; Yin, G. P.; Shi, P. F. J. Electrochem. Soc. 2005, 153, A2406.

    20. [20]

      (20) Park, K. W.; Choi, J. H.; Ahn, K. S.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 5989.

    21. [21]

      (21) Sun, D.; He, J. P.; Zhou, J. H.; Wang, T.; Di, Z. Y.; Ding, X. C. Acta Phys.-Chim. Sin. 2010, 26, 1219.

    22. [22]

      [孙 盾, 何建平, 周建华, 王 涛, 狄志勇, 丁晓春.. 物理化学学报, 2010, 26, 1219.]

    23. [23]

      (22) Lu, A. H.; Li, W. C.; Schmidt, W. G.; Schuth, F. Microporous Mesoporous Mat. 2005, 80, 117.

    24. [24]

      (23) Antolini, E.; Salgado, J. R. C.; nzalez, E. R. J. Electroanal. Chem. 2005, 580, 145.

    25. [25]

      (24) Zhou, J. H.; He, J. P.; Dang, W. J.; Zhao, G. W.; Zhang, C. X.; Mei, T. Q. Electrochem. Solid-State Lett. 2007, 10, B191.

    26. [26]

      (25) Pozio, A.; Francesco, D. M.; Cemmi, A. J. Power Sources 2002, 105, 13.

    27. [27]

      (26) Yang, R. Z.; Iiu X. P.; Zhang, H. R. Carbon 2005, 43, 11.

    28. [28]

      (27) Zhou, J. H.; He, J. P.; Dang, W. J.; Zhao, G. W.; Zhang, C. X. Electrochem. Solid-State Lett. 2007, 10, B191.

    29. [29]

      (28) Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E. J. Phys. Chem. B 2002, 106, 1869.

    30. [30]

      (29) jkovic, S. L.; Vidakovic, T. R.; Durovic, D. R. Electrochim. Acta 2003, 48, 3607.

    31. [31]

      (30) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.

    32. [32]

      (31) Geng, D. S.; Lu, G. X. J. Phys. Chem. C 2007, 111, 11897.

    33. [33]

      (32) Liu, F.; Lee, J. Y.; Zhou, W. J. Small 2006, 2, 121.

    34. [34]

      (33) Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395.

    35. [35]

      (34) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B 2003, 107, 5851.

    36. [36]

      (35) Lin, Y.; Cui, X.; Yen, C.; Wai, C. M. J. Phys. Chem. B 2005, 109, 14410.


  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(1115)
  • Abstract views(2517)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return