Citation: DING Xiao-Chun, CHEN Xiu, ZHOU Jian-Hua, WANG Tao, SUN Dun, HE Jian-Ping. Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 711-716. doi: 10.3866/PKU.WHXB20110327
-
Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5 (carbon replicated from SBA-15 silica) by NaBH4 reduction. X-ray diffraction (XRD) suggests alloy formation between Pt and Ni. X-ray photoelectron spectroscopy (XPS) shows that Pt-Ni/CMK-5 (5:1) has more detectable oxidized Ni. More metallic Pt is present on Pt-Ni/CMK-5 (5:1) (atomic ratio) than on Pt/CMK-5. Oxidized Ni species, such as NiO, Ni(OH)2, and NiOOH, favor the adsorption of methanol and the dissociation of methanol from the surface of Pt. Cyclic voltammetry shows that Pt-Ni/CMK-5 (5:1) has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1. It has more resistance to CO poisoning than Pt/CMK-5.
-
Keywords:
-
CMK-5
, - Pt/CMK-5 catalyst,
- Pt-Ni/CMK-5 catalyst,
- Methanol,
- Electrooxidation
-
-
-
[1]
(1) Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H. M.; Yia, B. L. J. Power Sources 2010, 195, 4098.
-
[2]
(2) Li, W. Z.; Zhou, W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Electrochim. Acta 2004, 49, 1045.
-
[3]
(3) Yang, C. W.; Wang, D. L.; Hu, X. G.; Dai, C. S.; Liang, Z. J. Alloy. Compd. 2008, 448, 109.
-
[4]
(4) Wang, X. M.; Li, N.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem., C 2010, 114, 16996.
-
[5]
(5) Tang, H.; Chen, J. H.; Nie, L. H.; Liu, D. Y.; Deng, W.; Kuang, Y. F.; Yao, S. Z. J. Colloid Interface Sci. 2004, 269, 26.
-
[6]
(6) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Nanosci. Nanotechnol. 2003, 3, 247.
-
[7]
(7) Yen, C. H.; Shimizu, K.; Lin, Y. Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Energy Fuels 2007, 21, 2268.
-
[8]
(8) Shimazaki, Y.; Hayasaka, S.; Koyama, T,; Nagao, D.; Kobayashi, Y.; Konno, M. J. Colloid Interface Sci. 2010, 350, 580.
-
[9]
(9) Zhao, Y.; Yifeng, E.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H. Electrochim. Acta 2007, 52, 5873.
-
[10]
(10) Do, J. S.; Chen, Y. T.; Lee, M. H. J. Power Sources 2007, 172, 623.
-
[11]
(11) Choi, J. H.; Park, K. W.; Kwon, B. K.; Sung, Y. E. J. Electrochem. Soc. 2003, 150, 773.
-
[12]
(12) Liu, F.; Lee, J. Y.; Zhou, W. J. J. Phys. Chem. B 2004, 108, 17959.
-
[13]
(13) Jeon, T. Y.; Yoo, S. J.; Cho, Y. H.; Lee, K. S.; Kang, S. H.; Sung, Y. E. J. Phys. Chem. C 2009, 113, 19732.
-
[14]
(14) Jiang, S. J.; Ma, Y. W.; Tao, H. S.; Jian, G. Q.; Wang, X. Z.; Fan, Y. N.; Zhu, J. M.; Hu, Z. J. Nanosci. Nanotechnol. 2010, 10, 3895.
-
[15]
(15) Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Langmuir 2007, 23, 6438.
-
[16]
(16) He, C. Z.; Kunz, H. R.; Fenton, J. M. J. Electrochem. Soc. 2003, 150, A1071.
-
[17]
(17) Mathiyarasu, J.; Remona, A. M.; Mani, A.; Phani, K. L. N.; Yegnaraman, V. J. Solid State Electrochem. 2004, 8, 968.
-
[18]
(18) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.
-
[19]
(19) Wang, Z. B.; Yin, G. P.; Shi, P. F. J. Electrochem. Soc. 2005, 153, A2406.
-
[20]
(20) Park, K. W.; Choi, J. H.; Ahn, K. S.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 5989.
-
[21]
(21) Sun, D.; He, J. P.; Zhou, J. H.; Wang, T.; Di, Z. Y.; Ding, X. C. Acta Phys.-Chim. Sin. 2010, 26, 1219.
-
[22]
[孙 盾, 何建平, 周建华, 王 涛, 狄志勇, 丁晓春.. 物理化学学报, 2010, 26, 1219.]
-
[23]
(22) Lu, A. H.; Li, W. C.; Schmidt, W. G.; Schuth, F. Microporous Mesoporous Mat. 2005, 80, 117.
-
[24]
(23) Antolini, E.; Salgado, J. R. C.; nzalez, E. R. J. Electroanal. Chem. 2005, 580, 145.
-
[25]
(24) Zhou, J. H.; He, J. P.; Dang, W. J.; Zhao, G. W.; Zhang, C. X.; Mei, T. Q. Electrochem. Solid-State Lett. 2007, 10, B191.
-
[26]
(25) Pozio, A.; Francesco, D. M.; Cemmi, A. J. Power Sources 2002, 105, 13.
-
[27]
(26) Yang, R. Z.; Iiu X. P.; Zhang, H. R. Carbon 2005, 43, 11.
-
[28]
(27) Zhou, J. H.; He, J. P.; Dang, W. J.; Zhao, G. W.; Zhang, C. X. Electrochem. Solid-State Lett. 2007, 10, B191.
-
[29]
(28) Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E. J. Phys. Chem. B 2002, 106, 1869.
-
[30]
(29) jkovic, S. L.; Vidakovic, T. R.; Durovic, D. R. Electrochim. Acta 2003, 48, 3607.
-
[31]
(30) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.
-
[32]
(31) Geng, D. S.; Lu, G. X. J. Phys. Chem. C 2007, 111, 11897.
-
[33]
(32) Liu, F.; Lee, J. Y.; Zhou, W. J. Small 2006, 2, 121.
-
[34]
(33) Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395.
-
[35]
(34) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B 2003, 107, 5851.
-
[36]
(35) Lin, Y.; Cui, X.; Yen, C.; Wai, C. M. J. Phys. Chem. B 2005, 109, 14410.
-
[1]
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[3]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[6]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[7]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[12]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[13]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[14]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[15]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[16]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[17]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[18]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[19]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[20]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[1]
Metrics
- PDF Downloads(1115)
- Abstract views(2516)
- HTML views(23)