Citation: CHENG Li, ZHANG Zi-Ying, SHAO Jian-Xin. Electronic Structures and Optical Properties of the O Vacancy in ZnO[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 846-850. doi: 10.3866/PKU.WHXB20110324 shu

Electronic Structures and Optical Properties of the O Vacancy in ZnO

  • Received Date: 9 November 2010
    Available Online: 15 February 2011

    Fund Project: 国家自然科学基金(61065006) (61065006)新疆凝聚态相变与微结构实验室开放课题(XJDX0912-2010-06)资助项目 (XJDX0912-2010-06)

  • The electronic structures and optical properties of ZnO0.875 were calculated by the ultra-soft pseudo-potential plane wave (pp-pw) method based on density functional theory. The crystal structure of ZnO with oxygen vacancies was optimized using first-principles. The electronic-state densities in pure ZnO and ZnO0.875 were then calculated. The dielectric functions, absorption spectrum, refractive index, extinction coefficient, and reflectivity of ZnO0.875 dominated by electron inter-band transitions were analyzed in terms of the precisely calculated density of state and the polarization dependencies of the optical properties were discussed in detail. Results indicate that the ZnO0.875 crystal is a uniaxial crystal and exhibits some features in the low energy region, which are caused by the O vacancy. Our results provide new insights into the study of the luminescent behavior of ZnO and offer theoretical data for the design and application of ZnO optoelectronic materials.

  • 加载中
    1. [1]

      (1) Rebien, M.; Henrion, W.; Bär, M.; Fischer, C. H. Appl. Phys. Lett. 2002, 80, 3518.

    2. [2]

      (2) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.

    3. [3]

      (3) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.

    4. [4]

      (4) Lambrecht, W. R. L.; Rodina, A. V.; Limpijumnong, S.; Segall, B.; Meyer, B. K. Phys. Rev. B 2002, 65, 075207.

    5. [5]

      (5) Xiong, Z. H.; Jiang, F. H. J. Phys. Chem. Solids 2007, 68, 1500.

    6. [6]

      (6) Mounkachi, O.; Benyoussef, A.; El Kenz, A.; Saidi, E. H.; Hlil, E. K. J. Magn. Magn. Mater. 2008, 320, 2760.

    7. [7]

      (7) Chang, G. S.; Kurmaev, E. Z.; Boukhvalov, W.; Finkelstein, L. D.; Colis, S.; Pedersen, T. M.; Moewes, A.; Dinia, A. Phys. Rev. B 2007, 75, 195215.

    8. [8]

      (8) Sun, Y. M.; Wang, H. Z. Physica B 2003, 325, 157.

    9. [9]

      (9) Kasai, P. H. Phys. Rev. 1963, 130, 989.

    10. [10]

      (10) Kröger, F. A.; Vink, H. J. J. Chem. Phys. 1954, 22, 250.

    11. [11]

      (11) Prosanov, I. Y.; Politov, A. A. Inorg. Mater. 1995, 31, 663.

    12. [12]

      (12) Hahn, D.; Nink, R. Physik Cond. Mater. 1965, 3, 311.

    13. [13]

      (13) Liu, M.; Kitai, A. H.; Mascher, P. J. Lumin. 1992, 54, 35.

    14. [14]

      (14) Bylander, E. G. J. Appl. Phys. 1978, 49, 1188.

    15. [15]

      (15) Dingle, R. Phys. Rev. Lett. 1969, 23, 579.

    16. [16]

      (16) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.

    17. [17]

      (17) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Matter 2002, 14, 2717.

    18. [18]

      (18) Ghosez, P.; Desquesnes, D.; nze, X.; Rabe, K. M. AIP Conf. Proc. 2000, 535, 102.

    19. [19]

      (19) Saha, S.; Sinha, T. P. Phys. Rev. B 2000, 62, 8828.

    20. [20]

      (20) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.

    21. [21]

      (21) Ambrosch-Draxl, C.; Sofo, J. O. Comput. Phys. Commun. 2006, 175, 1.

    22. [22]

      (22) Zhang, Z. Y.; Yang, D. L.; Liu, Y. H.; Cao, H. B.; Shao, J. X.; Jing, Q. Acta Phys. -Chim. Sin. 2009, 25, 1731.

    23. [23]

      [张子英, 杨德林, 刘云虎, 曹海滨, 邵建新, 井 群. 物理化学学报, 2009, 25, 1731.]

    24. [24]

      (23) Cai, M. Q.; Yin, Z.; Zhang, M. S. Appl. Phys. Lett. 2003, 83, 2805.

    25. [25]

      (24) Kohan, A. F.; Ceder, G.; Morgan, D.; Van de Walle, C. G. Phys. Rev. B 2000, 61, 15019.

    26. [26]

      (25) Decremps, F.; Datchi, F.; Saitta, A. M.; Polian, A. Phys. Rev. B 2003, 68, 104101.

    27. [27]

      (26) John, L. F. Phys. Rev. B 1973, 7, 3810.

    28. [28]

      (27) Li, H. X.; Wang, R. H.; Guo, C. H.; Zhang, H. Mater. Sci. Eng. B 2003, 103, 285.

    29. [29]

      (28) De Almeida, J. S.; Ahuja, R. Phys. Rev. B 2006, 73, 165102.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(1813)
  • Abstract views(3967)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return