Citation: YANG Yong-Hui, SUN Hong-Juan, PENG Tong-Jiang, HUANG Qiao. Synthesis and Structural Characterization of Graphene-Based Membranes[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 736-742. doi: 10.3866/PKU.WHXB20110320 shu

Synthesis and Structural Characterization of Graphene-Based Membranes

  • Received Date: 30 September 2010
    Available Online: 15 February 2011

    Fund Project: 西南科技大学研究生创新基金(10ycjj21)资助项目 (10ycjj21)

  • A stable hydrosol of graphene was synthesized by oxidation reduction and then a flow assembly of this graphene was used to form a graphene-based membrane by vacuum extraction filtering method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, particle size analysis, and scanning probe microscopy (SPM) were used to characterize the crystal structure, granularity, and characteristic change of the molecular spectrum of the samples in the reaction. FTIR tests show that the structural layer of graphite during the oxidation process bonds to a large number of functional groups and parts of these stable functional groups remain on the reduced structural layer of graphene. X-ray diffraction results show that the peaks of the graphite oxide shift to lower angles, become broader and the original graphite peak disappears. Suspensions of graphene oxide form condensed matter and graphene flocculating constituent during film deposition. Particle size analysis and SPM tests show that the particle sizes of the graphene oxide sheets that are dispersed in water show a tailing peak and a broad distribution while the graphene sheets show a singlet, narrower distribution, and smaller dimensions. Raman results show that during oxidation and reduction, the D peak and G peak of the samples gradually extend, ID/IG increases gradually and the degree of sample disorder increases. On the basis of the above analyses, the structural characteristics of the samples in the reaction are summarized.

  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.

    2. [2]

      (2) Yang, Q. H.; Lü, W.; Yang, Y. G.; Wang, M. Z. New Carbon Materials 2008, 23, 97.

    3. [3]

      [杨全红, 吕 伟, 杨永岗, 王茂章. 新型炭材料, 2008, 23, 97.]

    4. [4]

      (3) Gu, Z. B.; Ji, G. H.; Lu, M. H. Journal of Nanjing University of Technology (Natural Science) 2010, 32, 105.

    5. [5]

      [顾正彬, 季根华, 卢明辉. 南京工业大学学报: 自然科学版, 2010, 32, 105.]

    6. [6]

      (4) Zhang, W. N.; He, W.; Zhang, X. L. New Chemical Materials 2010, 38, 15.

    7. [7]

      [张伟娜, 何 伟, 张新荔. 化工新型材料, 2010, 38, 15.]

    8. [8]

      (5) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60.

    9. [9]

      (6) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.

    10. [10]

      (7) Kim, S. K.; Zhao, Y.; Jang, H.; Lee, Y. S.; Kim, M. J.; Ahn, H. J.; Kim, P.; Choi, Y. J.; Hong, H. B. Nature, 2009, 457, 706.

    11. [11]

      (8) Obraztsov, N. A. Nat. Nanotech. 2009, 4, 212.

    12. [12]

      (9) Tung, C. V.; Allen, J. M.; Yang, Y.; Kaner, B. R. Nat. Nanotech. 2009, 4, 25.

    13. [13]

      (10) Li, D.; Muller, M. B.; Gilje, S.; Kaner, B. R.; Wallace, G. G. Nat. Nanotech. 2008, 3, 101.

    14. [14]

      (11) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.; Sun, Z.; De, S.; Mc vern, I. T.; Holland, B.; Byrne, M.; Gunko, Y.; Boland, J.; Niraj, P.; Duesberg, G.; Krishnamurti, S.; odhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat. Nanotech. 2008, 3, 563.

    15. [15]

      (12) Hamilton, C. E.; Lomeda; J. R.; Sun, Z. Z.; Tour, M. J.; Barron, R. D. Nano Lett. 2009, 9, 3460.

    16. [16]

      (13) Choucair, M.; Thordarson, P.; Stride, J. A. Nat. Nanotech. 2009, 4, 30.

    17. [17]

      (14) Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 9910.

    18. [18]

      (15) Ramesh, P.; Bhagyalakshmi, S.; Sampath, S. J. Colloid Interface Sci. 2004, 274, 95.

    19. [19]

      (16) Stankovich, S.; Dikin, A. D.; Piner, D. R.; Kohlhaas, A. K.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, T. S.; Ruoff, S. R. Carbon 2007, 45, 1558.

    20. [20]

      (17) Yang, Y. H.; Sun, H. J.; Peng, T. J. Chin. J. Inorg. Chem. 2010, 26, 2083.

    21. [21]

      [杨勇辉, 孙红娟, 彭同江. 无机化学学报, 2010, 26, 2083.]

    22. [22]

      (18) Stankovich, S.; Piner, D. R.; Chen, X. Q.; Wu, N. Q.; Nguyen, T. S.; Ruoff, S. R. J. Mater. Chem. 2006, 16, 155.

    23. [23]

      (19) Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, D. R.; Stankovich, S.; Jung, I.; Field, A. D.; Ventrice, A. C.; Ruoff, S. R. Carbon 2009, 47, 145.

    24. [24]

      (20) Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. ACS Nano 2010, 4, 4317.

    25. [25]

      (21) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, D. R.; Dommett, H. B.; Guennadi, E.; Nguyen, T. S.; Ruoff, S. R. Nature 2007, 448, 457.

    26. [26]

      (22) Chen, C. M.; Yang, Y. G.; Wen, Y. F.; Yang, Q. H.; Wang, M. Z. New Carbon Materials 2008, 24, 345.

    27. [27]

      [陈成猛, 杨永岗, 温月芳, 杨金红, 王茂章. 新型炭材料, 2008, 24, 345.]

    28. [28]

      (23) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.

    29. [29]

      (24) He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53.

    30. [30]

      (25) Pan, Z. L.; Wan, P. Application Mineralogy; Wuhan University of Technology Press: Wuhan, 1993; pp 209-211.

    31. [31]

      [潘兆橹, 万 朴. 应用矿物学. 武汉: 武汉工业大学出版社, 1993: 209-211.]

    32. [32]

      (26) Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43, 641.

    33. [33]

      (27) Mermoux, M.; Chabre, Y.; Rousseau, A. Carbon 1991, 29, 469.

    34. [34]

      (28) Singh, V. K.; Patra,M. K.; Manoth, M.; wd, G. S.; Vadera, S. R.; Kumar, N. New Carbon Materials 2009, 24, 147.

    35. [35]

      (29) Ferrari, C. A.; Robertson, J. Raman Spectroscopy in Carbons: from Nanotubes to Diamond; Chemical Industry Press: Beijing, 2007; pp 193-204; translated by Tan, P. H., Li, F., Cheng, H. M.

    36. [36]

      [Ferrari, C. A.; Robertson, J. 碳材料的拉曼光谱—从纳米管到金刚石. 谭平恒, 李 峰, 成会明, 译. 北京: 化学工业出版社, 2007: 193-204.]

    37. [37]

      (30) Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095.

    38. [38]

      (31) Yang, X. G.; Wu, Q. L. Raman Spectroscopy Analysis and Application; National Defense Industry Press: Beijing, 2008; pp 210-220.

    39. [39]

      [杨序纲, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008: 210-220.]


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(9761)
  • Abstract views(9288)
  • HTML views(251)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return