Citation: AN Xiao-Hui, LIU Da-Huan, ZHONG Chong-Li. Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 553-558. doi: 10.3866/PKU.WHXB20110319 shu

Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks

  • Received Date: 15 September 2010
    Available Online: 15 February 2011

    Fund Project: 国家杰出青年科学基金(20725622) (20725622)国家自然科学基金(20876006, 20821004, 20906002)资助项目 (20876006, 20821004, 20906002)

  • Grand canonical Monte Carlo (GCMC) simulations were performed to study the stepped behaviors of carbon dioxide adsorption in the following five isoreticular metal-organic frameworks (IRMOFs): IRMOF-1, -8, -10, -14, -16. The simulation results show that the stepped phenomenon occurs easily when the temperature is low and the pore size is large for these IRMOFs. The critical pressure and temperature where the stepped behavior occurs show a linear relationship with the pore size. The results also further indicate that the electrostatic interaction between CO2 and CO2 molecules plays a dominant role on the stepped behavior. All these findings may provide useful information for the design and modification of MOFs for the adsorption and separation of carbon dioxide in gas mixtures.

  • 加载中
    1. [1]

      (1) Kuang, S. L. Modern Chemical Industry 2008, 28, 3.

    2. [2]

      [邝生鲁. 现代化工, 2008, 28, 3.]

    3. [3]

      (2) Zukal, A.; Dominguez, I.; Mayerová, J.; ?ejka, J. Langmuir 2009, 25, 10314.

    4. [4]

      (3) Xu, X. L.; Zhao, X. X.; Sun, L. B.; Liu, X. Q. J. Nat. Gas Chem. 2008, 17, 391.

    5. [5]

      (4) Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci 2010, 342, 575.

    6. [6]

      (5) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae , H. K.; Eddaoudi , M.; Kim, J. Nature 2003, 423, 705.

    7. [7]

      (6) Dunbar, K. R.; Heintz, R. A. P. Inorg. Chem. 1997, 45, 283.

    8. [8]

      (7) Gramaccioli, C. M. Acta Crystallogr. 1966, 21, 600.

    9. [9]

      (8) Okada, K.; Kay, M. I.; Cromer, D. T.; Almodovar, I. J. Chem. Phys. 1966, 44, 1648.

    10. [10]

      (9) Férey, G. Chem. Soc. Rev. 2008, 37, 191.

    11. [11]

      (10) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.

    12. [12]

      (11) Li, J. R.; Timmons, D. J.; Zhou, H. C. J. Am. Chem. Soc. 2009, 131, 6368.

    13. [13]

      (12) Yu, Q.; Zeng, Y. F.; Zhao, J. P.; Yang, Q.; Bu, X. H. Cryst. Growth Des. 2010, 10, 1878.

    14. [14]

      (13) Liu, Y. L.; Kravtsov, V. C.; Eddaoudi, M. Angew. Chem. 2008, 120, 8574.

    15. [15]

      (14) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Sunrr, R. Q. J. Am. Chem. Soc. 2008, 130, 406.

    16. [16]

      (15) Yang, Q. Y.; Liu, D. H.; Zhong, C. L. J. Chem. Ind. Eng. (China) 2009, 60, 805.

    17. [17]

      [阳庆元, 刘大欢, 仲崇立, 化工学报, 2009, 60, 805.]

    18. [18]

      (16) Yang, Q. Y.; Zhong, C. L.; Chen, J. F. J. Phys. Chem. C 2008, 112, 1562.

    19. [19]

      (17) Accelrys, Inc. Materials Studio, 3.0 V; Accelrys, Inc.: San Die , CA 2003.

    20. [20]

      (18) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.

    21. [21]

      (19) Yang, Q. Y.; Zhong, C. L. Langmuir 2009, 25, 2302.

    22. [22]

      (20) Mayo, S. L.; Olafson, B. D.; ddard III, W. A. J. Phys. Chem. 1990, 94, 8897.

    23. [23]

      (21) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.

    24. [24]

      (22) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2006, 110, 655.

    25. [25]

      (23) Liu, D. H.; Zheng, C. C.; Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. C 2009, 113, 5004.

    26. [26]

      (24) Yang, Q. Y.; Zhong, C. L. ChemPhysChem 2006, 7, 1417.

    27. [27]

      (25) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

    28. [28]

      (26) Xu, Q.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. J. Mater. Chem. 2010, 20, 706.


  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(1402)
  • Abstract views(4275)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return