Citation: ZHAO Min, ZHANG Yuan, WANG Lu. Second-Order Nonlinear Optical Properties of Organic Heteroaromatic Molecules with Carbazole Chromophores[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 584-588. doi: 10.3866/PKU.WHXB20110316 shu

Second-Order Nonlinear Optical Properties of Organic Heteroaromatic Molecules with Carbazole Chromophores

  • Received Date: 7 October 2010
    Available Online: 28 January 2011

    Fund Project: 国家自然科学基金(20871022)资助项目 (20871022)

  • Density functional theory (DFT) B3LYP/6-31G* method was used to optimize the geometrical structures of a series of heteroaromatic molecules with carbazole chromophores. The second-order nonlinear optical (NLO) properties and electronic spectra were then studied by finite field (FF) and time-dependent DFT (TD-DFT) methods at the 6-311G** level. The results showed that the polarizability α and the second-order NLO coefficient β values of all molecules were influenced greatly by the change of the push-pull electronic ability of the carbazole substituent groups and the introduction of heteroaromatic. When the pull electronic nitro and the push electronic hydroxyl were linked by carbazole substituent groups respectively and the furan heterocycle was introduced, the β values decreased (blue-shifted) with an increase in the maximum absorption wavelengths λmax of the molecules. The “nonlinear-transparency tradeoff” conflict was avoided because of the high second-order NLO responses and od transparency. All the compounds may have potential application in the development of NLO materials.

  • 加载中
    1. [1]

      (1) Geskin, V. M.; Lambert, C.; Bredas, J. L. J. Am. Chem. Soc. 2003, 125, 15651.

    2. [2]

      (2) Andreu, R.; Blesa, M. J.; Carrasquer, L.; Garin, J.; Orduna, J.; Villacampa, B.; Alcala, R.; Casado, J.; Delgado, M. C. R.; Navarrete, J. T. L.; Allain, M. J. Am. Chem. Soc. 2005, 127, 8835.

    3. [3]

      (3) Humphrey, J. L.; Lott, K. M.; Wright, M. E.; Duciauskas, D. J. Phys. Chem. B 2005, 109, 21496.

    4. [4]

      (4) Liu, C. G.; Qiu, Y. Q.; Su, Z. M.; Yang, G. C.; Sun, S. L. J. Phys. Chem. C 2008, 112, 7021.

    5. [5]

      (5) Rao, V. P.; Jen, A. K. Y.; Wong, K. Y.; Drost, K. J. Tetrahedron Lett. 1993, 34, 1747.

    6. [6]

      (6) Hsu, C. C.; Shu, C. F.; Huang, T. H.; Wang, C. H.; Lin, J. L.; Wang, Y. K.; Zang, Y. L. Chem. Phys. Lett. 1997, 274, 466.

    7. [7]

      (7) Bai, H. T.; Lin, H. C.; Luh, T. Y. J. Org. Chem. 2010, 75, 4591.

    8. [8]

      (8) Umeyama, T.; Takamatsu, T.; Tezuka, N.; Matano, Y.; Araki, Y.; Wada, T.; Yoshikawa, O.; Sagawa, T.; Yoshikawa, S.; Imahori, H. J. Phys. Chem. C 2009, 113, 10798.

    9. [9]

      (9) Li, Q. Q.; Lu, C. G.; Zhu, J.; Fu, E. Q.; Zhong, C.; Li, S. Y.; Cui, Y. P.; Qin, J. G.; Li, Z. J. Phys. Chem. B 2008, 112, 4545.

    10. [10]

      (10) Christopher, R. M.; Brian, J. M.; Lawrence, C. N.; Michael, A. M.; Eric L, H.; Benjamin A, B. J. Org. Chem. 2004, 69, 8239.

    11. [11]

      (11) Ma, J.; Li, S.; Jiang, Y. Macromolecules 2002, 35, 1109.

    12. [12]

      (12) Dalton, L.; Davies, J.; Elan van, A.; Sullivan, P. J. Am. Chem. Soc. 2008, 130, 10565.

    13. [13]

      (13) Song, N. H.; Ma, X. H.; Liang, R.; Yang, F.; Zhao, Z. H.; Zhang, A. X.; Zhou, Q. F.; Zhang, J. P. J. Mater. Chem. 2008, 18, 1756.

    14. [14]

      (14) Qian, Y. Dyes Pigments 2008, 76, 277.

    15. [15]

      (15) Albert, D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575.

    16. [16]

      (16) Luo, S. S.; Qiu, Y. Q.; Liu, X. D.; Liu, C. G.; Su, Z. M. Acta Phys. -Chim. Sin. 2009, 25, 1867.

    17. [17]

      [罗姗姗, 仇永清, 刘晓东, 刘春光, 苏忠民. 物理化学学报, 2009, 25, 1867.]

    18. [18]

      (17) Srinivas, K.; Sitha, S.; Rao, V. J.; Bhanuprakash, K. Opt. Mater. 2006, 28, 1006.

    19. [19]

      (18) Milian, B.; Orti, E.; Hernandez, V.; Navarrete, J. T. L.; Otsubo, T. J. Phys. Chem. B 2003, 107, 12175.

    20. [20]

      (19) Bo, D. S.; Ren, A. M.; Feng, J. K.; Yang, L. Chem. J. Chin. Univ. 2007, 28, 955.

    21. [21]

      [薄冬生, 任爱民, 封继康, 杨 丽. 高等学校化学学报, 2007, 28, 955.]

    22. [22]

      (20) Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404.

    23. [23]

      (21) Hua, J. L.; Zhang, W.; Luo, J. D.; Qin, J. G.; Sheng, Y.; Lu, Z. H. J. Chem. Res. -S 2001, 10, 418.

    24. [24]

      (22) Panthi, K.; Adhikari, R. M.; Kinstle, T. H. J. Phys. Chem. A 2010, 114, 4542.

    25. [25]

      (23) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    26. [26]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, 2004.

    27. [27]

      (25) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.

    28. [28]

      (26) Radovic, L. R.; Karra, M.; Skokova, K.; Thrower, P. A.; Carta, G.; Cincotti, A.; Tretiak, S.; Chernyak, V.; Mukamel, S. J. Chem. Phys. Lett. 1998, 287, 75.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(1080)
  • Abstract views(3227)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return