Citation: WANG Jia-Yong, BI Si-Wei, ZHAO Jun-Feng. Reaction Mechanisms between (Cl-nacnac)Pt(H) and a Terminal Alkyne[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 571-576. doi: 10.3866/PKU.WHXB20110312 shu

Reaction Mechanisms between (Cl-nacnac)Pt(H) and a Terminal Alkyne

  • Received Date: 27 October 2010
    Available Online: 27 January 2011

    Fund Project: 山东省自然科学基金(Y2007B23) (Y2007B23)固体表面物理化学国家重点实验室(厦门大学)(200702)资助项目 (厦门大学)(200702)

  • On the basis of Templeton′s experiment (West, N. M.; et al. Organometallics 2008, 27, 5252), the mechanisms of the main and the side reactions between (Cl-nacnac)Pt(H) (Cl-nacnac: bis(N-aryl)- β-diiminate) and a terminal alkyne were investigated by density functional theory. Our study shows that the 1,2-insertion of t-BuC≡CH into the Pt―H bond generates the main products and that C―C bond formation is the rate-determining step. The 2,1-insertion of t-BuC≡CH into the Pt―H bond generates the by- products and alkyne insertion is the rate-determining step. Based on the mechanisms of the main and side reactions the presence of the main product and the by-product could be explained. We found that the main product is thermodynamically controlled while the side product is kinetically controlled.

  • 加载中
    1. [1]

      (1) Trost, B. M. Science 1991, 254, 1471.

    2. [2]

      (2) Nicolaou, K. C.; Dai, W. M.; Tsay, S. C.; Estevez, V. A.; Wrasidlo, W. Science 1992, 256, 1172.

    3. [3]

      (3) Hubner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. J. Med. Chem. 2000, 43, 756.

    4. [4]

      (4) Trost, B. M.; Toste, D.; Pinkerton, A. Chem. Rev. 2001, 101, 2067.

    5. [5]

      (5) Bruneau, C.; Dixneuf, P. H. Accounts Chem. Res. 1999, 32, 311.

    6. [6]

      (6) Duchateau, R.; van Wee, C. T.; Teuben, J. H. Organometallics 1996, 15, 2291.

    7. [7]

      (7) Field, L. D.; Ward, A. J.; Turner, P. Aust. J. Chem. 1999, 52, 1085.

    8. [8]

      (8) Ohmura, T.; Yorozuya, S.; Yamamoto, Y.; Miyaura, N. Organometallics 2000, 19, 365.

    9. [9]

      (9) Akita, M.; Yasuda, H.; Nakamura, A. Bull. Chem. Soc. Jpn. 1984, 57, 480.

    10. [10]

      (10) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. J. Am. Chem. Soc. 1997, 119, 698.

    11. [11]

      (11) Schafer, M.; Wolf, J.; Werner, H. Organometallics 2004, 23, 5713.

    12. [12]

      (12) Gao, Y.; Puddephatt, R. J. Inorg. Chim. Acta. 2003, 350, 101.

    13. [13]

      (13) Sans, V.; Trzeciak, A. M.; Luis, S.; Ziolkowski, J. J. Catal. Lett. 2006, 109, 37.

    14. [14]

      (14) Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. J. Organomet. Chem. 2000, 604, 290.

    15. [15]

      (15) Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. Russ. J. Org. Chem. 2002, 38, 636.

    16. [16]

      (16) Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040.

    17. [17]

      (17) Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F.Organometallics 1994, 13, 4616.

    18. [18]

      (18) Weng, W.; Guo, C.; Celenligil-Cetin, R.; Foxman, B. M.; Ozerov, O. V. Chem. Commun. 2006, 197.

    19. [19]

      (19) Ciclosi, M.; Estevan, F.; Lahuerta, P.; Passarelli, V.; Perez-Prieto, J.; Sanau, M. Adv. Synth. Catal. 2008, 350, 234.

    20. [20]

      (20) Ghosh, R.; Zhang, X.; Achord, P.; Emge, T. J.; Krogh-Jespersen, K.; ldman, A. S. J. Am. Chem. Soc. 2007, 129, 853.

    21. [21]

      (21) O shi, S.; Ueta, M.; Oka, M. A.; Kurosawa, H. Chem. Commun. 2004, 2732

    22. [22]

      (22) Slu vc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 5275.

    23. [23]

      (23) Li, X.; Vogel, T.; Incarvito, C. D.; Crabtree, R. H. Organometallics 2005, 24, 62.

    24. [24]

      (24) Li, X.; Incarvito, C. D.; Crabtree, R. H. J. Am. Chem. Soc. 2003, 125, 3698.

    25. [25]

      (25) Selnau, H. E.; Merola, J. S. J. Am. Chem. Soc. 1991, 113, 4008.

    26. [26]

      (26) West, N. M.; Peter, S.; Templeton, J. L. Organometallics 2008, 27, 5252.

    27. [27]

      (27) Siegbahn, P. E. M.; Blomberg, M. R. A. Annu. Rev. Phys. Chem. 1999, 50, 221.

    28. [28]

      (28) Foresman, J. B.; Frisch, M. J. Exploring Chemistry with Electrinic Structure Methods; Gaussian Inc.: Pittsburgh, PA,1993.

    29. [29]

      (29) Chong, D. P. Recent Advances in Density Functional Methods, Part I; World Scientific: Singapore, 1995.

    30. [30]

      (30) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.

    31. [31]

      (31) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    32. [32]

      (32) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

    33. [33]

      (33) Fukui, K. J. Phys. Chem. 1970, 74, 4161.

    34. [34]

      (34) Fukui, K. Acc.ounts Chem. Res. 1981, 14, 363.

    35. [35]

      (35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision B05; Gaussian, Inc.: Pittsburgh, PA, 2003.

    36. [36]

      (36) Dolg, M. Modern Methods and Al rithms of Quantum Chemistry; Grotendorst, J. Ed.; John von Neumann Institute for Computing: Jülich, Germany 2000; Vol. 1, pp 479-508.

    37. [37]

      (37) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.

    38. [38]

      (38) Davidson, E. R. Chem. Rev. 2000, 100, 351.

    39. [39]

      (39) Bi, S. W.; Lin, Z. Y.; Jordan, R. F. Organometallics 2004, 23, 4882.

    40. [40]

      (40) Bi, S. W.; Ariafard, A.; Jia, G. C. Organometallics 2005, 24, 680.

    41. [41]

      (41) Xue, P.; Bi, S. W.; Sung, H. Y. Organometallics 2004, 23, 4735.

    42. [42]

      (42) Ariafard, A.; Bi, S.W.; Lin, Z. Y. Organometallics 2005, 24, 2241.

    43. [43]

      (43) Zhu, X. F.; Zhao, B.; Bi, S. W. Chem. Phys. Lett. 2006, 422, 6.

    44. [44]

      (44) Bi, S. W.; Wang, B.; Gao, Y. Z. Chin. J. Inorg. Chem. 2006, 22, 13.

    45. [45]

      [毕思玮, 王 宾, 高一箴. 无机化学学报 2006, 22, 13.]

    46. [46]

      (45) Fung, W. K.; Huang, X.; Man, M. L.; Ng, S. M.; Hung, M. Y.; Lin, Z.; Lau, C. P. J. Am. Chem. Soc. 2003, 125, 11539.

    47. [47]

      (46) Solin, N.; Kjellgren, J.; Szabó, K. J. J. Am. Chem. Soc. 2004, 126, 7026.

    48. [48]

      (47) Petz, W.; Kutschera, C.; Heitbaum, M.; Frenking, G.; Tonner, R.; Neumuller, B. Inorg. Chem. 2005, 44, 1263.

    49. [49]

      (48) Barton, D. H. R.; Hall, M. B.; Lin, Z.; Parekh, S. I.; Reibenspies, J. J Am. Chem. Soc. 1993, 115, 5056.

    50. [50]

      (49) West, N. M.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 2007, 129, 12372.

    51. [51]

      (50) West, N. M.; Templeton, J. L. Can. J. Chem. 2009, 87, 288.

    52. [52]

      (51) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.

    53. [53]

      (52) Brookhart, M.; Green, M. L. H.; Wong, L. L. Prog. Inorg. Chem. 1988, 36, 1.

    54. [54]

      (53) McGrady, G. S.; Downs, A. J. Coord. Chem. Rev. 2000, 197, 95.

    55. [55]

      (54) Zhao, H. T.; Lin, Z. Y.; Marder, T. B. J. Am. Chem. Soc. 2006, 128, 15637.

    56. [56]

      (55) Xia, Y. Z.; Huang, G. P. J. Org. Chem. 2010, 75, 7842.

    57. [57]

      (56) Sakaki, S.; Sumimato, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788.

    58. [58]

      (57) Dang, L.; Lin, Z. Y.; Marder, T. B. Organometallics 2010, 29, 917.

    59. [59]

      (58) Chen, M. J.; Nielsen, R. J.; Ahlquist, M.; ddard, W. A. Organometallics 2010, 29, 2026.

    60. [60]

      (59) Wang, J. P.; Xu, H. Y.; Gao, H.; Su, C. Y.; Zhao, C. Y.; Phillips, D. L. Organometallics 2010, 29, 42.

    61. [61]

      (60) Liu, W. G.; Zybin, S. V.; Dasgupta, S.; Klap?otke, T. M.; ddard, W. A., III. J. Am. Chem. Soc. 2009, 131, 7490.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(1013)
  • Abstract views(3502)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return