Citation: XIAO Lixin, DUAN Laiqiang, CHAI Junyi, WANG Yun, CHEN Zhijian, QU Bo,  NG Qihuang. Fabrication of Large Area of Anodic Aluminum Oxide Ultrathin Film Directly onto an ITO Electrode with a Ti Buffer Layer[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 749-753. doi: 10.3866/PKU.WHXB20110310 shu

Fabrication of Large Area of Anodic Aluminum Oxide Ultrathin Film Directly onto an ITO Electrode with a Ti Buffer Layer

  • Received Date: 12 October 2010
    Available Online: 27 January 2011

    Fund Project: 国家基础科学人才培养基金(J0630311) (J0630311) 国家自然科学基金(10934001, 60907015, 10821062) (10934001, 60907015, 10821062)国家重点基础研究发展规划项目(973) (2007CB307000, 2009CB930504)资助 (973) (2007CB307000, 2009CB930504)

  • An anodic aluminum oxide (AAO) ultrathin film (~140 nm, about half the thickness of the original Al film) was successfully fabricated directly onto an indium tin oxide (ITO) electrode without the erosion of ITO by a two-step anodization process in 0.3 mol·L-1 O2SO4 solution at a constant voltage of 20 V. Here, a thin titanium buffer layer was included between the ITO electrode and the Al film by radio frequency (RF) magnetron sputtering. A large area (about 4 cm2) of porous alumina with nanoscaled channels perpendicular to the substrates was obtained. The average pore diameter and the pore interspace were approximately 30 and 60 nm, respectively. We found that the Ti buffer layer with a thickness of 10-40 nm between the Al layer and the ITO substrate played a critical role in improving the adhesion and ensuring ITO protection, which could not be duplicated by other metals, e.g., Cr, Au, Ag, and Cu. UV-visible transmittance spectra confirmed that the Ti buffer layer was oxidized and became transparent TiO2 and that 10-20 nm of the Ti buffer layer together with the two-step anodization process is suitable for high transparency. Therefore, the AAO specimen possessing a high nanoscale regularity and transparency may have potential use in photonics, photovoltaics, and nanofabrications.

  • 加载中
    1. [1]

      (1) Masuda, H.; Fukuda, K. Science 1995, 268, 1466.

    2. [2]

      (2) Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.

    3. [3]

      (3) Guo, Y. Y.; Wang, M.; Mao, X. B.; Jiang, Y. X.; Wang, C.; Yang, Y. L. Acta Phys. -Chim. Sin. 2010, 26, 203.

    4. [4]

      [郭元元, 汪 明, 毛晓波, 蒋月秀, 王 琛, 杨延莲. 物理化学学报, 2010, 26, 203.]

    5. [5]

      (4) Yanagishita, T.; Sasaki, M.; Nishio, K.; Masuda, H. Adv. Mater. 2004, 16, 429.

    6. [6]

      (5) Johansson, A.; Widenkvist, E.; Lu, J.; Boman, M.; Jansson, U. Nano Lett. 2005, 5, 1603.

    7. [7]

      (6) Shukla, S.; Kim, K. T.; Baev, A.; Yoon, Y. K.; Litchinitser, N. M.; Prasad, P. N. Nano Lett. 2010, 4, 2249.

    8. [8]

      (7) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. J. Appl. Phys. 1998, 84, 6023.

    9. [9]

      (8) Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Nat. Mater. 2006, 5, 741.

    10. [10]

      (9) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.

    11. [11]

      (10) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353.

    12. [12]

      (11) Hobbs, K. L.; Larson, P. R.; Lian, G. D.; Keay J. C.; Johnson, M. B. Nano Lett. 2004, 4, 167.

    13. [13]

      (12) Sander, M. S.; Tan, L. S. Adv. Funct. Mater. 2003, 13, 393.

    14. [14]

      (13) Tian, M. L.; Xu, S. Y.; Wang, J. G.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Nano Lett. 2005, 5, 697.

    15. [15]

      (14) Teh, L. K.; Furin, V.; Martucci, A.; Guglielmi, M.; Wong, C. C.; Romanato, F. Thin Solid Films 2007, 515, 5787.

    16. [16]

      (15) Chuang, L. M.; Fu, H. K.; Chen, Y. F. Appl. Phys. Lett. 2005, 86, 061902.

    17. [17]

      (16) Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S. J. Electrochem. Soc. 2002, 149, B321.

    18. [18]

      (17) Chu, S. Z.; Wada, K.; Inoue, S.; Hishita, S.; Kurashima, K. J. Phys. Chem. B 2003, 107, 10180.

    19. [19]

      (18) Musselman, K. P.; Mulholland, G. J.; Robinson, A. P.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Mater. 2008, 20, 4470.

    20. [20]

      (19) Ren, X.; Gershon, T.; Iza, D. C.; Munoz-Rojas, D.; Musselman, K.; Macmanus-Driscoll, J. L. Nanotechnology 2009, 20, 365604.

    21. [21]

      (20) Kuo, C. Y.; Tang, W. C.; Gau, C.; Guo, T. F.; Jeng, D. Z. Appl. Phys. Lett. 2008, 93, 033307.

    22. [22]

      (21) Foong, T. R. B.; Sellinger, A.; Hu, X. ACS Nano 2008, 2, 2250.

    23. [23]

      (22) Xiao, L. X.; Duan, L. Q.; Luo, F. W.; Chen, Z. J.; ng, Q. H. A Way to Fabricate an AAO Template and the Corresponding Device Directly on a Transparent electrode. CN Patent 200810224414.7, 2008-10-14.

    24. [24]

      [肖立新, 段来强, 罗方闻, 陈志坚, 龚旗煌. 在透明电极上制作AAO模板的方法及相应器件: 中国, CN200810224414.7

    25. [25]

      [P]. 2008-10-14.]

    26. [26]

      (23) Masuda, H.; Yada, K.; Osaka, A. Jpn. J. Appl. Phys. 1998, 37, L1340.

    27. [27]

      (24) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Adv. Mater. 1999, 11, 483.

    28. [28]

      (25) Tang, Y. X.; Tao, J.; Zhang, Y. Y.; Wu, T.; Tao, H. J.; Bao, Z. G. Acta Phys. -Chim. Sin. 2008, 24, 2191.

    29. [29]

      [汤育欣, 陶 杰, 张焱焱, 吴 涛, 陶海军, 包祖国. 物理化学学报, 2008, 24, 2191.]


  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    5. [5]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    6. [6]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(1472)
  • Abstract views(3556)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return