Citation: LI Xiao-Yan, LIU Qun, ZHENG Shi-Jun, MENG Ling-Peng. Mechanisms and Kinetics of the HOSO+NO Reaction[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 564-570. doi: 10.3866/PKU.WHXB20110308 shu

Mechanisms and Kinetics of the HOSO+NO Reaction

  • Received Date: 20 September 2010
    Available Online: 27 January 2011

    Fund Project: 国家自然科学基金(20973053, 20771033, 20801017) (20973053, 20771033, 20801017) 河北省自然科学基金(B2010000371, B2011205058) (B2010000371, B2011205058) 河北省教育厅基金(2009137) (2009137)河北师范大学基金(L2008B06, L2009Y06)资助项目 (L2008B06, L2009Y06)

  • The mechanism of the reaction between HOSO and NO was investigated at the B3LYP/6-311++G(d,p) level of theory. The geometries of the reactants, intermediates, transition states, and products were optimized. The intrinsic reaction coordinates (IRC) were traced and the connecting relationship between the transition states and the reactants, products were confirmed. The single point energies of the species were corrected at the CCSD(T) /6-311++G(d,p) level of theory. The reaction rate constants were calculated over a temperature range of 200-3000 K using classical transition state theory (TST) and canonical vibration transition state theory (CVT) combined with a small-curvature tunneling (SCT) correction. The results showed that the HOSO+NO reaction occurs in both the singlet and triplet reaction channels. The singlet reaction channel is dominant, and HNO and SO2 are the main products. The chemical bond changes in the main reaction channel were analyzed by a topological analysis of the electron density.

  • 加载中
    1. [1]

      (1) Glarborg, P.; Kubel, D.; Dam-Johansen, K.; Chiang, H. M.; Bozzelli, J. W. Int. J. Chem. Kinet. 1996, 28, 773.

    2. [2]

      (2) Arutyunov, V. A. Catal. 1990, 31, 6.

    3. [3]

      (3) Lovejoy, E. R. J. Phys. Chem. 1987, 91, 5749.

    4. [4]

      (4) Frank, A. J.; Sadilek, M.; Ferrier, J. G.; Ture?ek, F. J. Am. Chem. Soc. 1996, 118, 11321.

    5. [5]

      (5) Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. Phys. Chem. Chem. Phys. 2002, 4, 1549.

    6. [6]

      (6) Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Mol. Struct. 2001, 261, 563.

    7. [7]

      (7) Zachariah, M. R.; Smith, O. I. Combust. Flame 1987, 69, 125.

    8. [8]

      (8) Cerru, F. G.; Kronenburg, A.; Lindstedt, R. P. Proc. Combust. Inst. 2005, 30, 1227.

    9. [9]

      (9) Alzueta, M.; Bilbao, R.; Glarborg, P. Combust. Flame 2001, 127, 2234.

    10. [10]

      (10) Blitz, M. A.; McKee, K. W.; Pilling, M. J. Proc. Combust. Inst. 2000, 28, 2491.

    11. [11]

      (11) Hughes, K. J.; Blitz, M. A.; Pilling, M. J.; Robertson, S. H. Proc. Combust. Inst. 2002, 29, 2431.

    12. [12]

      (12) Roohi, M. Chin. Chem. Lett. 2009, 476, 168.

    13. [13]

      (13) Saliba, N.; Barbara, A.; Koel, B. E. Surface Science 1997, 389, 147.

    14. [14]

      (14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    15. [15]

      (15) Zhan, P. Y.; Pan, Y.; Tang, Y. Z. Chemical Physics 2009, 360, 53.

    16. [16]

      (16) Sun, Y.; Yao, J. Z. J. Mol. Struct.-Theochem 2009, 916, 10 .

    17. [17]

      (17) Chen, H. T.; Chen, H. L. Chemical Physics Letters 2009, 470, 172.

    18. [18]

      (18) Ishida, G.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153.

    19. [19]

      (19) Xun, G. X.; Li, Y. M.; Wang, D. M. Quantum Chemistry, 2nd ed.; Science Press: Beijing, 2009; pp 423-425.

    20. [20]

      [徐光宪, 黎乐民, 王德民. 量子化学. 第二版. 北京: 科学出版社,2009: 423-425.]

    21. [21]

      (20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian, Inc.: Pittsburgh, PA, 2004.

    22. [22]

      (21) Zhang, S. W.; Truong, T. N. VKLab. University of Utah: Salt Lake City, USA, 2001.

    23. [23]

      (22) Biegler-Kônìng, F. J.; Derdau, R.; Bayles, D.; Bader, R. F. W. AIM 2000. University of Applied Science: Bielefeld, Germany, 2000.

    24. [24]

      (23) Zheng, S. J.; Cai, X. H.; Meng, L. P. QCPE Bull 1995, 15(2), 25.


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(1226)
  • Abstract views(2432)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return