Citation: QIAN Huifeng, BARRY Ellen, ZHU Yan, JIN Rongchao. Doping 25-Atom and 38-Atom ld Nanoclusters with Palladium[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 513-519. doi: 10.3866/PKU.WHXB20110304 shu

Doping 25-Atom and 38-Atom ld Nanoclusters with Palladium

  • Received Date: 4 November 2010
    Available Online: 21 January 2011

    Fund Project: The project was supported by Carnegie Mellon University (CMU) (CMU) the Air Force Office of Scientific Research (AFOSR) (AFOSR)the National Institute for ccupational Safety and Health (NIOSH) (NIOSH) USA. BARRY Ellen was supported by the National Science Foundation-Research Experiences for Undergraduates, USA (NSF grant DMR #1005076). (NSF grant DMR #1005076)

  • In this work, we describe two synthetic procedures for preparing palladium doped 25-atom nanoclusters (referred to as Pd1Au24(SR)18, where ―SR represents thiolate, R=C2H4Ph). Pure Pd1Au24(SC2H4Ph)18 nanoclusters are isolated by solvent extraction and size exclusion chromatography. Mass spectrometry and optical spectroscopy analyses demonstrate that the Pd1Au24(SC2H4Ph)18 nanocluster adopts the same core-shell structure as that of the homo ld Au25(SC2H4Ph)18 nanocluster, that is, a Pd- or Au-centered icosahedron surrounded by six Au2(SR)3 “staple”-like motifs. Similar doping behavior has also been observed in 38-atom M38(SR)24 (M: metal) nanoclusters, indicating the unique behavior of Pd dopant being preferentially located in the icosahedral center. The catalytic activity of Pd1Au24(SC2H4Ph)18 has also been evaluated for the selective hydrogenation of α,β-unsaturated ketone (e.g., benzalacetone) to α,β- unsaturated alcohol, and a 42% conversion of benzalacetone is attained.

  • 加载中
    1. [1]

      (1) Jin, R. Nanoscale 2010, 2, 343.

    2. [2]

      (2) Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. J. Phys. Chem. B 1998, 102, 10643.

    3. [3]

      (3) Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. Acc. Chem. Res. 2010, 43, 1289.

    4. [4]

      (4) Tsunoyama, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 18216.

    5. [5]

      (5) Zhu, Y.; Wu, Z.; Gayathri, G. C.; Qian, H.; Gil, R. R.; Jin, R. J. Catal. 2010, 271, 155.

    6. [6]

      (6) Li, J.; Wang, S. G. J. Mol. Model. 2010, 16, 505.

    7. [7]

      (7) Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. J. Phys. Chem. C 2007, 111, 7845.

    8. [8]

      (8) Jiang, D. E. Acta Phys. -Chim. Sin. 2010, 26, 999.

    9. [9]

      (9) Zhou, R. J.; Shi, M. M.; Chen, X. Q.; Wang, M.; Chen, H. Z. Chem. -Eur. J. 2009, 15, 4944.

    10. [10]

      (10) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883.

    11. [11]

      (11) Zhu, M.; Eckenhoff, W. T.; Pintauer, T.; Jin, R. J. Phys. Chem. C 2008, 112, 14221.

    12. [12]

      (12) Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280.

    13. [13]

      (13) Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2000, 104, 2630.

    14. [14]

      (14) Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261.

    15. [15]

      (15) Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568.

    16. [16]

      (16) Rao, T. U. B.; Pradeep, T. Angew. Chem. Int. Edit. 2010, 49, 3925.

    17. [17]

      (17) Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2009, 131, 2490.

    18. [18]

      (18) Negishi, Y.; Tsunoyama, H.; Suzuki, M.; Kawamura, N.; Matsushita, M. M.; Maruyama, K.; Sugawara, K.; Yokoyama, T.; Tsukuda. T. J. Am. Chem. Soc. 2006, 128, 12034.

    19. [19]

      (19) Iwasa, T.; Nobusada, K. Chem. Phys. Lett. 2007, 441, 268.

    20. [20]

      (20) Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 7086.

    21. [21]

      (21) Zhu, Y.; Qian, H.; Zhu, M.; Jin, R. Adv. Mater. 2010, 22, 1915.

    22. [22]

      (22) Zhu, Y.; Qian, H.; Jin, R. Chem. -Eur. J. 2010, 16, 11455.

    23. [23]

      (23) Zhu, Y.; Qian, H.; Drake, B. A.; Jin, R. Angew. Chem. Int. Edit. 2010, 49, 1295.

    24. [24]

      (24) Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1, 2903.

    25. [25]

      (25) Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. J. Am. Chem. Soc. 2008, 130, 1138.

    26. [26]

      (26) Wu, Z.; Suhan, J.; Jin, R. J. Mater. Chem. 2009, 19, 622.

    27. [27]

      (27) Parker, J. F.; Weaver, J. E. F.; McCallum, F.; Fields-Zinna, C. A.; Murray, R. W. Langmuir 2010, 26, 13650.

    28. [28]

      (28) Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Phys. Chem. Chem. Phys. 2010, 12, 6219.

    29. [29]

      (29) Jiang, D.; Dai, S. Inorg. Chem. 2009, 48, 2720.

    30. [30]

      (30) Kacprzak, K. A.; Lehtovaara, L.; Akola, J.; Lopez-Acevedoa, O.; Hakkinen, H. Phys. Chem. Chem. Phys. 2009, 11, 7123.

    31. [31]

      (31) Walter, M.; Moseler, M. J. Phys. Chem. C 2009, 113, 15834.

    32. [32]

      (32) Jiang, D. E; Whetten, R. L. Phys. Rev. B 2009, 80, 115402.

    33. [33]

      (33) Akola, J.; Kacprzak, K. A.; Lopez-Acevedo, O.; Walter, M.; Gronbeck, H.; Hakkinen, H. J. Phys. Chem. C 2010, 114, 15986.

    34. [34]

      (34) Reveles, J. U.; Clayborne, P. A.; Reber, A. C.; Khanna, S. N.; Pradhan, K.; Sen, P.; Pederson, M. R. Nat. Chem. 2009, 1, 310.

    35. [35]

      (35) Wyrwas, R. B.; Alvarez, M. M.; Khoury, J. T.; Price, R. C.; Schaaff, T. G. Whetten, R. L. Eur. Phys. J. D 2007, 43, 91.

    36. [36]

      (36) Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J.; Jose-Yacaman, M. J. J. Phys. Chem. B 1997, 101, 7885.

    37. [37]

      (37) Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T. J. Am. Chem. Soc. 2008, 130, 8608.

    38. [38]

      (38) Qian, H.; Zhu, M.; Andersen, U. N.; Jin, R. J. Phys. Chem. A 2009, 113, 4281.

    39. [39]

      (39) Qian, H.; Zhu, Y.; Jin, R. J. Am. Chem. Soc. 2010, 132, 4583.

    40. [40]

      (40) Fields-Zinna, C. A.; Crowe, M. C.; Dass, A.; Weaver, J. E. F.; Murray, R. W. Langmuir 2009, 25, 7704.

    41. [41]

      (41) Qian, H.; Jin, R. Nano Lett. 2009, 9, 4083.

    42. [42]

      (42) Dharmaratne, A. C.; Krick, T.; Dass, A. J. Am. Chem. Soc. 2009, 131, 13604.

    43. [43]

      (43) Zhu, M.; Qian, H.; Jin, R. J. Phys. Chem. Lett. 2010, 1, 1003.

    44. [44]

      (44) Wu, Z.; Lanni, E.; Chen, W.; Bier, M. E.; Ly, D.; Jin, R. J. Am. Chem. Soc. 2009, 131, 16672.

    45. [45]

      (45) Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 5940.

    46. [46]

      (46) Xiang, H. J.; Wei, S. H.; ng, X. G. J. Am. Chem. Soc. 2010, 132, 7355.

    47. [47]

      (47) MacDonald, M. A.; Zhang, P.; Qian, H.; Jin, R. J. Phys. Chem. Lett. 2010, 1, 1821.

    48. [48]

      (48) Angel, L. A.; Majors, L. T.; Dharmaratne, A. C.; Dass, A. ACS Nano 2010, 4, 4691.

    49. [49]

      (49) Wu, Z.; Gayathri, C.; Gil, R.; Jin, R. J. Am. Chem. Soc. 2009, 131, 6535.

    50. [50]

      (50) Ko , A.; Sakai, N.; Tatsuma, T. Electrochem. Commun. 2010, 12, 996.

    51. [51]

      (51) Zheng, N.; Johnson, J. P.; Williams, C. C.; Wang, G. Nanotechnology 2010, 21, 295708.

    52. [52]

      (52) Wang, Z.; Cai, W.; Sui, J. ChemPhysChem 2009, 10, 2012.

    53. [53]

      (53) Jiang, D. E.; Walter, M.; Dai, S. Chem. -Eur. J. 2010, 16, 4999.


  • 加载中
    1. [1]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    2. [2]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    3. [3]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    8. [8]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    13. [13]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    14. [14]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    15. [15]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    16. [16]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    17. [17]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    18. [18]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    19. [19]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    20. [20]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

Metrics
  • PDF Downloads(2472)
  • Abstract views(3037)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return