Citation: LIU Chun-Yan, XU Bin, TANG Ya-Wen, CAO Gao-Ping, YANG Yu-Sheng, LU Tian-Hong. Electrocatalytic Performance of Pd Catalyst Supported on Macropore Carbon for Oxidation of Formic Acid[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 604-608. doi: 10.3866/PKU.WHXB20110301 shu

Electrocatalytic Performance of Pd Catalyst Supported on Macropore Carbon for Oxidation of Formic Acid

  • Received Date: 16 August 2010
    Available Online: 18 January 2011

    Fund Project: 国家自然科学基金(20873065, 21073094)资助项目 (20873065, 21073094)

  • The electrocatalytic performances of a Vulcan XC-72 carbon black supported Pd (Pd/XC) catalyst and a macroporous carbon supported Pd (Pd/MC) catalyst for formic acid oxidation in a direct formic acid fuel cell were investigated and compared. This was carried out using X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy, and electrochemical techniques. The cyclic voltammograms indicate that the main peak potentials for the oxidation of formic acid at the Pd/XC and Pd/MC catalyst electrodes are similar and they are located at about 0.15 V. However, the peak current density of the Pd/MC catalyst electrode is about 30% larger than that of the Pd/XC catalyst electrode. The chronoamperometric curves indicate that the peak current density at the Pd/MC catalyst electrode at 6000 s is about 38% larger than that at the Pd/XC catalyst electrode. These results show that the electrocatalytic activity and stability of the Pd/MC catalyst for the oxidation of formic acid are better than those of the Pd/XC catalyst. Because the average size and relative crystallinity of the Pd particles in the two catalysts are similar, the reason for the better electrocatalytic performance of the Pd/MC catalyst could be only attributed to its larger pore diameter and higher conductivity because of its high extent of MC graphitization.

  • 加载中
    1. [1]

      (1) Ha, S.; Adams, B.; Masel, R. I. J. Power Sources 2004, 128, 119.

    2. [2]

      (2) Rice, C.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83.

    3. [3]

      (3) Kim, J. S.; Yu, J. K.; Lee, H. S.; Kim, J. Y.; Kim, Y. C.; Han, J. H.; Oh, I. H.; Rhee, Y. W. Korean J. Chem. Eng. 2005, 22, 661.

    4. [4]

      (4) Sauk, J. H.; Byun, J. Y.; Kang, Y. C.; Kim, H. Y. Korean J.Chem. Eng. 2005, 22, 605.

    5. [5]

      (5) Rhee, Y. W.; Ha, S. Y.; Masel, R. I. J. Power Sources 2003, 117, 35.

    6. [6]

      (6) Jiang, J.; Kucernak, A. J. Electroanal. Chem. 2002, 520, 64.

    7. [7]

      (7) Park, S.; Xie, Y.; Weaver, M. J. Langmuir 2002, 18, 5792.

    8. [8]

      (8) Lovic, J. D.; Tripkovic, A. V.; jkovic, S. L.; Popovic, K. D.; Tripkovic, D.V.; Olszewski, P.; Kowal, A. J. Electroanal. Chem. 2005, 581, 294.

    9. [9]

      (9) Capon, D.; Parsons, R. J. Electroanal. Chem. 1975, 65, 285.

    10. [10]

      (10) Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M. Phys. Chem. Chem. Phys. 2003, 5, 4242.

    11. [11]

      (11) Ha, S.; Larsen, R.; Zhu, Y.; Masel, R. I. J. Power Sources 2005, 144, 28.

    12. [12]

      (12) Liu, Z.; Hong, L.; Tham, M. P.; Lim, T. H.; Jiang, H. J. Power Sources 2006, 161, 831.

    13. [13]

      (13) Carrette, L.; Friedrich, K, A.; Stimmimg, U. ChemPhysChem 2000, 1, 162.

    14. [14]

      (14) Liu, C. P.; Yang, H.; Xing, W.; Lu, T. H. Chem. J. Chin. Univ. 2002, 23, 1367.

    15. [15]

      [刘长鹏, 杨 辉, 刑 巍, 陆天虹, 高等学学学报, 2002, 23, 1367.]

    16. [16]

      (15) Gloaguen, F.; Leger, J. M.; Lamy, C. J. Appl. Electrochem. 1997, 27, 1052.

    17. [17]

      (16) Shao, Y. Y.; Yin, G. P.; Gao, Y. Z.; Shi, P. F. J. Electrochem. Soc. 2006, 153, A1093.

    18. [18]

      (17) Chan, K. Y.; Ding, J.; Ren, J. W.; Cheng, S. A.; Tsang, K. Y. J. Mater. Chem. 2004, 14, 505.

    19. [19]

      (18) Zhao, C. R.; Wang, W. K.; Yu, Z. B.; Zhang, H.; Wang, A. B.; Yang, Y. S. J. Mater. Chem. 2010, 20, 976.

    20. [20]

      (19) Wang, Z. B.; Zhao, C. R.; Shi, P. F.; Yang, Y. S.; Yu, Z. B.; Wang, W. K.; Yin, G. P. J. Phys. Chem. C 2010, 114, 672.

    21. [21]

      (20) Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A. Nature Materials 2002, 1, 190.

    22. [22]

      (21) Reddy, A. L. M.; Ramaprabhu, S. J. Phys. Chem. C 2007, 111, 16138.

    23. [23]

      (22) Schnitzler, M. C.; Mangrich, A. S.; Macedo, W. A. A.; Ardisson, J. D.; Zarbin, A. J. G. Inorganic Chemistry 2006, 45, 10642.

    24. [24]

      (23) Ota, K. I.; Ishihara, A.; Mitsushima, S.; Lee, K.; Suzuki, Y.; Horibe, N.; Nakagawa, T.; Kamiya, N. J. New Mater. Electrochem. Syst. 2006, 8, 25.

    25. [25]

      (24) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. J. Catal. 1995, 154, 98.

    26. [26]

      (25) Antolini, E.; Cardellini, F. J. J. Alloy. Compd. 2001, 315, 118.


  • 加载中
    1. [1]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    18. [18]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(1698)
  • Abstract views(2459)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return