Citation: SU Chang, LU Guo-Qiang, XU Li-Huan, ZHANG Cheng, MA Chun-An. Synthesis and Properties of Spindle-Shaped LiFePO4 for the Cathode Material of Lithium Ion Battery[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 609-614. doi: 10.3866/PKU.WHXB20110241 shu

Synthesis and Properties of Spindle-Shaped LiFePO4 for the Cathode Material of Lithium Ion Battery

  • Received Date: 18 October 2010
    Available Online: 18 January 2011

    Fund Project: 国家自然科学基金(51003095) (51003095)浙江省公益性技术应用研究计划(2010C31121)资助项目 (2010C31121)

  • We synthesized LiFePO4 directly by a solvothermal method at low temperature and then a heat treatment was carried out to give a LiFePO4/C composite for using as a cathode in lithium ion battery. The crystal structure and the charge-discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and galvanostatic charge-discharge testing. The results indicated that the LiFePO4 synthesized at low-temperature (120 °C) with glycerol as a solvent had a single olivine-type crystal structure and a spindle-shaped morphology with a very narrow size distribution. After heat treatment, a LiFePO4/C composite with excellent charge-discharge performance was obtained and the spindle morphology of the sample was intact. Galvanostatic charge-discharge tests showed that the prepared LiFePO4/C cathode had an initial discharge specific capacity of 147.2 mAh·g-1 at 0.1C at room temperature and it was 136.3 mAh·g-1 after 50 cycles. The average discharge specific capacities of LiFePO4/C at 0.2C, 0.5C, and 1C were about 130, 120, and 108 mAh·g-1, respectively.

  • 加载中
    1. [1]

      (1) Scrosati, B.; Garche, J. J. Power Sources 2010, 195, 2419.

    2. [2]

      (2) odenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    3. [3]

      (3) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.

    4. [4]

      (4) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.

    5. [5]

      (5) Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. Angew. Chem. Int. Edit. 2008, 47, 7461.

    6. [6]

      (6) Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater. 2007, 6, 749.

    7. [7]

      (7) Wang, G. X.; Shen, X. P.; Yao, J. J. Power Sources 2009, 189, 543.

    8. [8]

      (8) Muraliganth, T.; Murugan, A. V.; Manthiram, A. J. Mater. Chem. 2008, 18, 5661.

    9. [9]

      (9) Wang, Y. G.; Wang, Y. R.; Hosono, E. J.; Wang, K. X.; Zhou, H. S. Angew. Chem. Int. Edit. 2008, 47, 7461.

    10. [10]

      (10) Mi, C. H.; Cao, Y. X.; Zhang, X. G.; Zhao, X. B.; Li, H. L. Powder Technol. 2008, 181, 301.

    11. [11]

      (11) Huang, Y. H.; odenough, J. B. Chem. Mater. 2008, 20, 7237.

    12. [12]

      (12) Lu, Y.; Shi, J. C.; Guo, Z. P.; Tong, Q. S.; Huang, W. J.; Li, B. Y. J. Power Sources 2009, 194, 786.

    13. [13]

      (13) Wang, Y. F.; Zhang, D.; Yu, X.; Cai, R.; Shao, Z. P.; Liao, X. Z.; Ma, Z. F. J. Alloy. Compd. 2010, 492, 675.

    14. [14]

      (14) Lim, S. Y.; Yoon, C. S.; Cho, J. P. Chem. Mater. 2008, 20, 4560.

    15. [15]

      (15) Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439.

    16. [16]

      (16) Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Energy Environ. Sci. 2010, 3, 457.

    17. [17]

      (17) Uchiyama, H.; Imai, H. Cryst. Growth Des. 2010, 10, 1777.

    18. [18]

      (18) Dominko, R.; Bele, M.; upil, J. M.; Gaberscek, M.; Hanzel, D.; Arcon, I.; Jamnik, J. Chem. Mater. 2007, 19, 2960.

    19. [19]

      (19) Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; upil, J. M.; Pejovnik, S.; Jamnik, J. J. Power Sources 2006, 153, 274.

    20. [20]

      (20) Axmann, P.; Stinner, C.; Wohlfahrt-Mehrens, M.; Mauger, A.; Gendron, F.; Julien, C. M. Chem. Mater. 2009, 21, 1636.

    21. [21]

      (21) Liu, J. L.; Jiang, R. R.; Wang, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.

    22. [22]

      (22) Whittingham, M. S.; Chen, J. J. Electrochem. Commun. 2006, 8, 855.

    23. [23]

      (23) Ou, X. Q.; Xu, S. Z.; Liang, G. C.; Wang, L.; Zhao, X. Sci. China Ser. E 2009, 52, 264.

    24. [24]

      (24) Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J. M. Chem. Mater. 2009, 21, 1096.

    25. [25]

      (25) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Electrochem. Solid-State Lett. 2006, 9, A352.

    26. [26]

      (26) Yang, H.; Wu, X. L.; Cao, M. H.; Guo, Y. G. J. Phys. Chem. C 2009, 113, 3345.

    27. [27]

      (27) Arnold, G.; Garche, J.; Hemmer, R.; Ströbele, S.; Vogler, C.; Wohlfahrt-Mehrens, M. J. Power Sources 2003, 119-121, 247.


  • 加载中
    1. [1]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(1652)
  • Abstract views(2449)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return