Citation: LAO Guo-Hong, SHAO Hai-Bo, FAN Yu-Qian, WANG Jian-Ming, ZHANG Jian-Qing, CAO Chu-Nan. Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 627-632. doi: 10.3866/PKU.WHXB20110240 shu

Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode

  • Received Date: 13 October 2010
    Available Online: 17 January 2011

    Fund Project: 浙江省自然科学基金(Y406192) (Y406192)高等学校博士学科点专项科研基金(20070335157)资助项目 (20070335157)

  • Spherular-Co3O4 particles were synthesized on graphite electrode surface by ammonia-evaporation-induction. Its electrooxidation catalytic behavior for sulfide ions in an alkaline solution was investigated by electrochemical measurements such as potentiodynamic scanning and potentiostatic polarization. We found that high catalytic activity and the highest current density of 580 mA·cm-2 were obtained at -0.40 V. In addition, its catalytic performance was stable during potentiostatic polarization. Electrochemical impedance spectroscopy (EIS) indicated a low charge transfer resistance, which explained the high catalytic activity from the viewpoint of electrochemical kinetics.

  • 加载中
    1. [1]

      (1) Wang, C. B.; Tang, C. W.; Gau, S. J. Catal. Lett. 2005, 101, 59.

    2. [2]

      (2) Wang, G. X.; Chen, Y.; Konstantinov, K. J. Alloy. Compd. 2002, 340, L5.

    3. [3]

      (3) Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.

    4. [4]

      (4) Plamas, S.; Ferrara, F.; Vacca, A.; Mascia, M.; Polcaro, A. M. Electrochim. Acta 2007, 53, 401.

    5. [5]

      (5) Cao, D.; Chao, J.; Sun, L.; Wang, G. J. Power Sources 2008, 179, 88.

    6. [6]

      (6) Petrov, K.; Srinivasan, S. Int. J. Hydrog. Energy 1996, 21, 163.

    7. [7]

      (7) Kalina, D. W.; Maas, E. T. Int. J. Hydrog. Energy 1985, 10, 157.

    8. [8]

      (8) Kalina, D. W.; Maas, E.T. Int. J. Hydrog. Energy 1985, 10, 163.

    9. [9]

      (9) Szynkarczuk, J.; Komorowski, R. G.; Donini, J. C. Electrochim. Acta 1994, 39, 2285.

    10. [10]

      (10) Szynkarczuk, J.; Komorowski, R. G.; Donini, J. C. Electrochim. Acta 1995, 40, 487.

    11. [11]

      (11) Shih, Y.; Lee, J. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 834.

    12. [12]

      (12) Weast, R. C.; Astle, M. J.; Beyer, W. H. Handbook of Physics and Chemistry; CRC Press: Cleveland, 1982; pp 65-68.

    13. [13]

      (13) Annni, A. A.; Mao, Z.; White, R. E.; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1990, 137, 2703.

    14. [14]

      (14) Mao, Z.; Annni, A. A.; White, R. E; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1991, 138, 1300.

    15. [15]

      (15) Long, H. Z. Mining and Metal Eng. 2003, 23, 47

    16. [16]

      [龙怀中. 矿冶工程, 2003, 23, 47.]

    17. [17]

      (16) Yi, Q. F. Acta Phys. -Chim. Sin. 2000, 16: 263

    18. [18]

      [易清风. 物理化学学报, 2000, 16, 263.]

    19. [19]

      (17) Li, Y. G.; Tan, B.; Wu, Y. Y. Nano. Lett. 2008, 179, 87.

    20. [20]

      (18) Li, Y. G.; Tan, B.; Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.

    21. [21]

      (19) Tian, Z. W. Electrochemical Methods; Science Press: Beijing, 1984; pp 131-133.

    22. [22]

      [田昭武. 电化学研究方法. 北京: 科学出版社, 1984: 131-133.]

    23. [23]

      (20) Zhang, J. Q. Electrochemical Measurement Technolog; Chemical Industry Press: Beijing, 2010; pp 84-87

    24. [24]

      [张鉴清. 电化学测试方法. 北京: 化学工业出版社, 2010: 84-87.]

    25. [25]

      (21) Barbero, C.; Planes, G.A. Miras, M.C. Electrochem.Commun. 2001, 3, 114.

    26. [26]

      (22) Casella, I. G.; Gatta, M. J. Electroanal. Chem. 2002, 534, 32.

    27. [27]

      (23) Cao, C. N.; Zhang, J. Q. An Introduction to Electrochemical Impedance Spectroscopy; Science Press: Beijing, 2002; pp 128-141.

    28. [28]

      [曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 128-141.]

    29. [29]

      (24) Van Der Weide, D. H.; Van Westing, E. P. M. Corrosion Sci. 1994, 36, 644.

    30. [30]

      (25) Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1200.


  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

Metrics
  • PDF Downloads(1193)
  • Abstract views(2431)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return