Citation: LAO Guo-Hong, SHAO Hai-Bo, FAN Yu-Qian, WANG Jian-Ming, ZHANG Jian-Qing, CAO Chu-Nan. Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 627-632. doi: 10.3866/PKU.WHXB20110240 shu

Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode

  • Received Date: 13 October 2010
    Available Online: 17 January 2011

    Fund Project: 浙江省自然科学基金(Y406192) (Y406192)高等学校博士学科点专项科研基金(20070335157)资助项目 (20070335157)

  • Spherular-Co3O4 particles were synthesized on graphite electrode surface by ammonia-evaporation-induction. Its electrooxidation catalytic behavior for sulfide ions in an alkaline solution was investigated by electrochemical measurements such as potentiodynamic scanning and potentiostatic polarization. We found that high catalytic activity and the highest current density of 580 mA·cm-2 were obtained at -0.40 V. In addition, its catalytic performance was stable during potentiostatic polarization. Electrochemical impedance spectroscopy (EIS) indicated a low charge transfer resistance, which explained the high catalytic activity from the viewpoint of electrochemical kinetics.

  • 加载中
    1. [1]

      (1) Wang, C. B.; Tang, C. W.; Gau, S. J. Catal. Lett. 2005, 101, 59.

    2. [2]

      (2) Wang, G. X.; Chen, Y.; Konstantinov, K. J. Alloy. Compd. 2002, 340, L5.

    3. [3]

      (3) Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.

    4. [4]

      (4) Plamas, S.; Ferrara, F.; Vacca, A.; Mascia, M.; Polcaro, A. M. Electrochim. Acta 2007, 53, 401.

    5. [5]

      (5) Cao, D.; Chao, J.; Sun, L.; Wang, G. J. Power Sources 2008, 179, 88.

    6. [6]

      (6) Petrov, K.; Srinivasan, S. Int. J. Hydrog. Energy 1996, 21, 163.

    7. [7]

      (7) Kalina, D. W.; Maas, E. T. Int. J. Hydrog. Energy 1985, 10, 157.

    8. [8]

      (8) Kalina, D. W.; Maas, E.T. Int. J. Hydrog. Energy 1985, 10, 163.

    9. [9]

      (9) Szynkarczuk, J.; Komorowski, R. G.; Donini, J. C. Electrochim. Acta 1994, 39, 2285.

    10. [10]

      (10) Szynkarczuk, J.; Komorowski, R. G.; Donini, J. C. Electrochim. Acta 1995, 40, 487.

    11. [11]

      (11) Shih, Y.; Lee, J. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 834.

    12. [12]

      (12) Weast, R. C.; Astle, M. J.; Beyer, W. H. Handbook of Physics and Chemistry; CRC Press: Cleveland, 1982; pp 65-68.

    13. [13]

      (13) Annni, A. A.; Mao, Z.; White, R. E.; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1990, 137, 2703.

    14. [14]

      (14) Mao, Z.; Annni, A. A.; White, R. E; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1991, 138, 1300.

    15. [15]

      (15) Long, H. Z. Mining and Metal Eng. 2003, 23, 47

    16. [16]

      [龙怀中. 矿冶工程, 2003, 23, 47.]

    17. [17]

      (16) Yi, Q. F. Acta Phys. -Chim. Sin. 2000, 16: 263

    18. [18]

      [易清风. 物理化学学报, 2000, 16, 263.]

    19. [19]

      (17) Li, Y. G.; Tan, B.; Wu, Y. Y. Nano. Lett. 2008, 179, 87.

    20. [20]

      (18) Li, Y. G.; Tan, B.; Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.

    21. [21]

      (19) Tian, Z. W. Electrochemical Methods; Science Press: Beijing, 1984; pp 131-133.

    22. [22]

      [田昭武. 电化学研究方法. 北京: 科学出版社, 1984: 131-133.]

    23. [23]

      (20) Zhang, J. Q. Electrochemical Measurement Technolog; Chemical Industry Press: Beijing, 2010; pp 84-87

    24. [24]

      [张鉴清. 电化学测试方法. 北京: 化学工业出版社, 2010: 84-87.]

    25. [25]

      (21) Barbero, C.; Planes, G.A. Miras, M.C. Electrochem.Commun. 2001, 3, 114.

    26. [26]

      (22) Casella, I. G.; Gatta, M. J. Electroanal. Chem. 2002, 534, 32.

    27. [27]

      (23) Cao, C. N.; Zhang, J. Q. An Introduction to Electrochemical Impedance Spectroscopy; Science Press: Beijing, 2002; pp 128-141.

    28. [28]

      [曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 128-141.]

    29. [29]

      (24) Van Der Weide, D. H.; Van Westing, E. P. M. Corrosion Sci. 1994, 36, 644.

    30. [30]

      (25) Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1200.


  • 加载中
    1. [1]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    16. [16]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    17. [17]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(1193)
  • Abstract views(2499)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return